×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm:effect of resonance states

  • Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+,3- of 144Sm and 2+,4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, Jπ=3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered.
      PCAS:
  • 加载中
  • [1] L. F. Canto, P. R. S. Gomes, R. Donangelo et al, Phys. Rep., 424:1(2004)
    [2] J. F. Liang, C. Signorini, Int. J. Mod. Phys. E, 14:1121(2005)
    [3] N. Keeley, R. Raabe, N. Alamanos et al, Prog. Part. Nucl. Sci., 59:579(2007)
    [4] L.F. Canto, P.R.S. Gomes, R. Donangelo et al, Phys. Rep., 596:1(2015)
    [5] P. R. S. Gomes, J. Lubian, L. F. Canto et al, Few-body Systems, 57:165(2016)
    [6] M. Dasgupta, D. J. Hinde, R. D. Butt et al, Phys. Rev. Lett., 82:1395(1999)
    [7] M. Dasgupta, D. J. Hinde, K. Hagino et al, Phys. Rev. C, 66:041602(R) (2002)
    [8] M. Dasgupta, P. R. S. Gomes, D. J. Hinde et al, Phys. Rev. C, 70:024606(2004)
    [9] C. Signorini, Z. H. Liu, Z. C. Li et al, Eur. Phys. J. A, 5:7(1999)
    [10] P. R. S. Gomes, I. Padron, E. Crema et al, Phys. Lett. B, 634:356(2006)
    [11] P. R. S. Gomes, I. Padron, E. Crema et al, Phys. Rev. C, 73:064606(2006)
    [12] Y. Sakuragi, M. Yahiro, and M. Kamimura, Prog. Theor. Phys. Suppl., 89:1(1986)
    [13] Y. Sakuragi, M. Yahiro, and M. Kamimura, Prog. Theor. Phys., 70:1047(1983)
    [14] N. Austern, Y. Iseri, M. Kamimura et al, Phys. Rep., 154:125(1987)
    [15] C. Beck, N. Keeley, A. Diaz-Torres, Phys. Rev. C, 75:054605(2007)
    [16] J. P. Fernandez-Garcia, M. A. G. Alvarez, A. M. Moro et al, Phys. Lett. B, 693:310(2010)
    [17] K. Zerva, N. Patronis, A. Pakou et al, Phys. Rev. C, 80:017601(2009)
    [18] K. Rusek, N. Keeley, A. Pakou et al, Nucl. Phys. A, 2007, 784:13(2007)
    [19] N. Keeley, R. S. Mackintosh, and C. Beck, Nucl. Phys. A, 380:1(2010)
    [20] N. Keeley and K. Rusek, Phys. Lett. B, 375:9(1996)
    [21] D. R. Otomar, J. Lubian, and P. R. S. Gomes, Eur. Phys. J. A., 46:285(2010)
    [22] G. R. Kelly, N. J. Davis, R. P. Ward et al, Phys. Rev. C, 63:024601(2000)
    [23] A. Pakou, N. Alamanos, G. Gillibert et al, Phys. Rev. C, 69:054602(2004)
    [24] A. Pakou, K. Rusek, N. Alamanos et al, Eur. Phys. J. A., 39:187(2009)
    [25] D. R. Otomar, J. Lubian, P. R. S. Gomes et al, Phys. Rev. C, 80:034614(2009)
    [26] L. F. Canto, J. Lubian, P. R. S. Gomes et al, Phys. Rev. C, 80:047601(2009)
    [27] J. Lubian, T. Correa, E. F. Aguilera et al, Phys. Rev. C, 79:064605(2009)
    [28] B. Paes, J. Lubian, P. R. S. Gomes et al, Nucl. Phys. A, 890:1(2012)
    [29] J. Rangel, J. Lubian, L. F. Canto et al, Phys. Rev. C 93:054610(2016)
    [30] S. P. Hu, G. L. Zhang, J. C. Yang et al, Phys. Rev. C, 91:044619(2015)
    [31] P. K. Rath, S. Santra, N. L. Singh et al, Phys. Rev. C, 79:051601(2009)
    [32] P. K. Rath, S. Santra, N. L. Singh et al, Nucl. Phys. A, 874:14(2012)
    [33] N. T. Zhang, D. Y. Fang, P. R. S. Gomes et al, Phys. Rev. C, 90:024621(2014)
    [34] Y. D. Fang, P. R. S. Gomes, J. Lubian et al, Phys. Rev. C, 91:014608(2015)
    [35] C. L. Guo, G. L. Zhang, S. P. Hu et al, Phys. Rev. C, 92:014615(2015)
    [36] M. F. Guo, G. L Zhang, P. R. S. Gomes et al, Phys. Rev. C, 94:044605(2016)
    [37] Bing Wang, Wei-Juan Zhao, P. R. S. Gomes et al, Phys. Rev. C, 90:034612(2014)
    [38] Bing Wang, Wei-Juan Zhao, A. Diaz-Torres et al, Phys. Rev. C, 93:014615(2016)
    [39] A. Diaz-Torres and I. J. Thompson, Phys. Rev. C, 65:024606(2002)
    [40] K. Hagino, A. Vitturi, C. H. Dasso et al, Phys. Rev. C, 61:037602(2000)
    [41] K. Rusek, N. Alamanos, N. Keeley et al, Phys. Rev. C, 70:014603(2004)
    [42] H. D. Marta, L. F. Canto, R. Donangelo, Phys. Rev. C, 89:034625(2014)
    [43] S. Hashimoto, K. Ogata, S. Chiba et al, Prog. of Theor. Phys., 122:1291(2009)
    [44] Maddalena Boselli and Alexis Diaz-Torres, J. Phys. G, Nucl. Part. Phys., 41:094001(2014)
    [45] M. Boselli and A. Diaz-Torres, Phys. Rev. C, 92:044610(2015)
    [46] A. Diaz-Torres, D. J. Hinde, J. A. Tostevin et al, Phys. Rev. Lett., 98:152701(2007)
    [47] A. Diaz-Torres, J. Phys. G, Nucl. Part. Phys., 37:075109(2010)
    [48] A. Diaz-Torres, D. Quraishi, unpublished
    [49] A. Diaz-Torres, I. J. Thompson, and C. Beck, Phys. Rev. C, 68:044607(2003)
    [50] V. V. Parkar, V. Jha, and S. Kailas, Phys. Rev. C, 94:024609(2016)
    [51] D. H. Luong, M. Dasgupta, D. J. Hinde et al, Phys. Rev. C, 88:034609(2013)
    [52] A. Gmez Camacho, A. Diaz-Torres, P. R. S. Gomes et al, Phys. Rev. C, 91:014607(2015)
    [53] A. Gmez Camacho, A. Diaz-Torres, P. R. S. Gomes, and J. Lubian, Phys. Rev. C, 93:024604(2016)
    [54] I. J. Thompson, Comput. Phys. Rep., 7:167(1988)
    [55] M. Gmez-Ramos and A. M. Moro, Phys. Rev. C, 95:034609(2017)
    [56] A. Woodard, J. Figueira, D. Otomar et al, Nucl. Phys. A, 873:17(2012)
    [57] H. An and C. Cai, Phys. Rev. C, 73:054605(2006)
    [58] L. C. Chamon, D. Pereira, M. S. Hussein et al, Phys. Rev. Lett., 79:5218(1997)
    [59] L. C. Chamon B. V. Carlson, L. R. Gasques et al, Phys. Rev. C, 66:014610(2002)
    [60] S. Raman, C. W. Nestor Jr, and P. Tikkanem, At. Data Nucl. Data Tables, 78, 1(2001)
    [61] T. Kibedi and R. H. Spear, At. Data Nucl. Data Tables, 80:35(2001)
    [62] J. R. Leigh, M. Dasgupta, D. J. Hinde et al, Phys. Rev. C, 52:3151(1995)
  • 加载中

Get Citation
A. Gómez Camacho, J. Lubian, H. Q. Zhang and Shan-Gui Zhou. CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm:effect of resonance states[J]. Chinese Physics C, 2017, 41(12): 124103. doi: 10.1088/1674-1137/41/12/124103
A. Gómez Camacho, J. Lubian, H. Q. Zhang and Shan-Gui Zhou. CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm:effect of resonance states[J]. Chinese Physics C, 2017, 41(12): 124103.  doi: 10.1088/1674-1137/41/12/124103 shu
Milestone
Received: 2017-07-20
Revised: 2017-09-15
Fund

    A. Gmez Camacho from CONACYT, Mxico, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)

Article Metric

Article Views(1550)
PDF Downloads(75)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

CDCC calculations of fusion of 6Li with targets 144Sm and 154Sm:effect of resonance states

  • 1.  Departamento de Aceleradores Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027, C. P. 11801, Mé
  • 2.  Instituto de Fisica Universidade Federal Fluminense, Avenida Litoranea s/n, Gragoatá
  • 3. China Institute of Atomic Energy, Beijing 102413, China
  • 4. Department of Technical Physics, Beijing University, Beijing 100871, China
  • 5. CAS Key Laboratory of Frontiers of Theoretical Physics Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
  • 6. Center of Theoretical Nuclear Physics National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, China
  • 7. Synergetic Innovation Center for Quantum Effects and Application Hunan Normal University, Changsha 410081, China
  • 8. School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  A. Gmez Camacho from CONACYT, Mxico, J. Lubian from CNPq, FAPERJ, Pronex, Brazil. S.G.Z was partly supported by the NSF of China (11120101005, 11275248, 11525524, 11621131001, 11647601, 11711540016), 973 Program of China (2013CB834400) and the Key Research Program of Frontier Sciences of CAS. H.Q.Z. from NSF China (11375266)

Abstract: Continuum Discretized Coupled-Channel (CDCC) model calculations of total, complete and incomplete fusion cross sections for reactions of the weakly bound 6Li with 144,154Sm targets at energies around the Coulomb barrier are presented. In the cluster structure frame of 6Li→α+d, short-range absorption potentials are considered for the interactions between the ground state of the projectile 6Li and α-d fragments with the target. In order to separately calculate complete and incomplete fusion and to reduce double-counting, the corresponding absorption potentials are chosen to be of different range. Couplings to low-lying excited states 2+,3- of 144Sm and 2+,4+ of 154Sm are included. So, the effect on total fusion from the excited states of the target is investigated. Similarly, the effect on fusion due to couplings to resonance breakup states of 6Li, namely, l=2, Jπ=3+,2+,1+ is also calculated. The latter effect is determined by using two approaches, (a) by considering only resonance state couplings and (b) by omitting these states from the full discretized energy space. Among other things, it is found that both resonance and non-resonance continuum breakup couplings produce fusion suppression at all the energies considered.

    HTML

Reference (62)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return