Microscopic analysis of octupole shape transitions in neutron-rich actinides with relativistic energy density functional

  • Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and electric transition rates in eight neutron-rich isotopic chains-Ra, Th, U, Pu, Cm, Cf, Fm, and No-are systematically analyzed using a quadrupole-octupole collective Hamiltonian model, with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations based on the PC-PK1 energy density functional. The theoretical results of low-lying negative-parity bands, odd-even staggering, average octupole deformations <β3>, and B(E3; 31-→ 01+) show evidence of a shape transition from nearly spherical to stable octupole-deformed, and finally octupole-soft equilibrium shapes in the neutron-rich actinides. A microscopic mechanism for the onset of stable octupole deformation is also discussed in terms of the evolution of single-nucleon orbitals with deformation.
      PCAS:
  • 加载中
  • [1] P. A. Butler and W. Nazarewicz, Rev. Mod. Phys., 68:349(1996)
    [2] I. Ahmad and P. A. Butler, Annu. Rev. Nucl. Part. Sci., 43:71(1993)
    [3] P. A. Butler and L. Willmann, Nucl. Phys. News, 25:12(2015)
    [4] P. A. Butler, J. Phys. G, 43:073002(2016)
    [5] L. P. Gaffney et al, Nature, 497:199(2013)
    [6] B. Bucher et al, Phys. Rev. Lett., 116:112503(2016)
    [7] B. Bucher et al, Phys. Rev. Lett., 118:152504(2017)
    [8] P. Bonche, P.-H. Heenen, H. Flocard, and D. Vautherin, Phys. Lett. B, 175:387(1986)
    [9] P. Bonche, in The Variation of Nuclear Shapes, edited by J. D. Garrett (World Scientific, Singapore, 1988), p. 302
    [10] J. L. Egido and L. M. Robledo, Nucl. Phys. A, 524:65(1991)
    [11] K. Rutz, J. A. Maruhn, P. G. Reinhard, and W. Greiner, Nucl. Phys. A, 590:680(1995)
    [12] L. S. Geng, J. Meng, and H. Toki, Chin. Phys. Lett., 24:1865(2007)
    [13] J.-Y. Guo, P. Jiao, and X.-Z. Fang, Phys. Rev. C, 82:047301(2010)
    [14] L. M. Robledo, M. Baldo, P. Schuck, and X. Vias, Phys. Rev. C, 81:034315(2010)
    [15] L. M. Robledo and G. F. Bertsch, Phys. Rev. C, 84:054302(2011)
    [16] R. Rodrguez-Guzmn, L.M. Robledo, and P. Sarriguren, Phys. Rev. C, 86:034336(2012)
    [17] L. M. Robledo and P. A. Butler, Phys. Rev. C, 88:051302(2013)
    [18] L. M. Robledo, J. Phys. G, 42:055109(2015)
    [19] Rmi N. Bernard, Luis M. Robledo, and Toms R. Rodrguez, Phys. Rev. C, 93:061302(R) (2016)
    [20] J. Zhao, B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 86:057304(2012)
    [21] S.-G. Zhou, Phys. Scr., 91:063008(2016)
    [22] J. Zhao, B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 95:014320(2017)
    [23] K. Nomura, D. Vretenar, and B.-N.Lu, Phys. Rev. C, 88:021303(2013)
    [24] K. Nomura, D. Vretenar, T. Nikić and B.-N. Lu, Phys. Rev. C, 89:024312(2014)
    [25] K. Nomura, R. Rodrguez-Guzmn, and L. M. Robledo, Phys. Rev. C, 92:014312(2015)
    [26] S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C, 93:044304(2016)
    [27] S. E. Agbemava and A. V. Afanasjev, Phys. Rev. C, 96:024301(2017)
    [28] S. Ebata and T. Nakatsukasa, Phys. Scr., 92:064005(2017)
    [29] W. Zhang, Z.-P. Li, and S.-Q.Zhang, Chi. Ph. C, 34:1094(2010)
    [30] W. Zhang, Z. P. Li, S. Q. Zhang, and J. Meng, Phys. Rev. C, 81:034302(2010)
    [31] Z. P. Li, B. Y. Song, J. M. Yao, D. Vretenar, and J. Meng, Phys. Lett. B, 726:866(2013)
    [32] J. M. Yao, E. F. Zhou, and Z. P. Li, Phys. Rev. C, 92:041304(R) (2015)
    [33] Z. P. Li, T. Nikić and D. Vretenar, J. Phys. G, 43:024005(2016)
    [34] E. F. Zhou, J. M. Yao, Z. P. Li, J. Meng, and P. Ring, Phys. Lett. B, 753:227(2016)
    [35] S. Y. Xia, H. Tao, Y. Lu, Z. P. Li, T. Nikić and D. Vretenar, Phys. Rev. C, 96:054303(2017)
    [36] W. Nazarewicz, P. Olanders, I. Ragnarsson, J. Dudek, G. A. Leander, P. Moller, and E. Ruchowsa, Nucl. Phys. A, 429:269(1984)
    [37] P. Mller, R. Bengtsson, B. Carlsson, P. Olivius, T. Ichikawa, H. Sagawa, and A. Iwamoto, At. Data Nucl. Data Tables, 94:758(2008)
    [38] H.-L. Wang, J. Yang, M.-L. Liu, and F.-R. Xu, Phys. Rev. C, 92:024303(2015)
    [39] O. Scholten, F. Iachello, and A. Arima, Ann. Phys. (NY), 115:325(1978)
    [40] T. Otsuka and M. Sugita, Phys. Lett. B, 209:140(1988)
    [41] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C, 70:064319(2004)
    [42] D. Bonatsos, D. Lenis, N. Minkov, D. Petrellis, and P. Yotov, Phys. Rev. C, 71 (2005) 064309.
    [43] P. G. Bizzeti and A. M. Bizzeti-Sona, Phys. Rev. C, 88:011305(R) (2013)
    [44] N. Minkov, S. Drenska, M. Strecker, W. Scheid, and H. Lenske, Phys. Rev. C, 85:034306(2012)
    [45] R. V. Jolos, P. von Brentano, and J. Jolie, Phys. Rev. C, 86:024319(2012)
    [46] Y.-J. Chen, Z.-C. Gao, Y.-S. Chen, and Y. Tu, Phys. Rev. C, 91:014317(2015)
    [47] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys., 75:121(2003)
    [48] D. Vretenar, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Rep., 409:101(2005)
    [49] J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys., 57:470(2006)
    [50] J. Stone and P.-G. Reinhard, Prog. Part. Nucl. Phys., 58:587(2007)
    [51] T. Nikić D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys., 66:519(2011)
    [52] Relativistic Density Functional for Nuclear Structure, edited by J. Meng (World Scientic, Singapore, 2016)
    [53] J. Meng, J. Peng, S. Q. Zhang, and S.-G. Zhou, Phys. Rev. C, 73:037303(2006)
    [54] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Heidelberg, 1980)
    [55] J. M. Yao, K. Hagino, Z. P. Li, J. Meng, and P. Ring, Phys. Rev. C, 89:054306(2014)
    [56] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C, 82:054319(2010)
    [57] Q. S. Zhang, Z. M. Niu, Z. P. Li, J. M. Yao, and J. Meng, Front. Phys., 9:529(2014)
    [58] K. Q. Lu, Z. X. Li, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C, 91:027304(2015)
    [59] S. Quan, Q. Chen, Z. P. Li, T. Nikić and D. Vretenar, Phys. Rev. C, 95:054321(2017)
    [60] D. R. Inglis, Phys. Rev., 103:1786(1956)
    [61] S. T. Belyaev, Nucl. Phys., 24:322(1961)
    [62] M. Girod and B. Grammaticos, Nucl. Phys. A, 330:40(1979)
    [63] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur. Phys. J. A, 8:59(2000)
    [64] T. Nikić D. Vretenar, and P. Ring, Comp. Phys. Comm., 185:1808(2014)
    [65] J. Xiang, Z. P. Li, J. M. Yao, W. H. Long, P. Ring, and J. Meng, Phys. Rev. C, 88:057301(2013)
  • 加载中

Get Citation
Zhong Xu and Zhi-Pan Li. Microscopic analysis of octupole shape transitions in neutron-rich actinides with relativistic energy density functional[J]. Chinese Physics C, 2017, 41(12): 124107. doi: 10.1088/1674-1137/41/12/124107
Zhong Xu and Zhi-Pan Li. Microscopic analysis of octupole shape transitions in neutron-rich actinides with relativistic energy density functional[J]. Chinese Physics C, 2017, 41(12): 124107.  doi: 10.1088/1674-1137/41/12/124107 shu
Milestone
Received: 2017-08-25
Fund

    Supported by National Natural Science Foundation of China (11475140, 11575148)

Article Metric

Article Views(1649)
PDF Downloads(53)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Microscopic analysis of octupole shape transitions in neutron-rich actinides with relativistic energy density functional

    Corresponding author: Zhi-Pan Li,
  • 1. School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Fund Project:  Supported by National Natural Science Foundation of China (11475140, 11575148)

Abstract: Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and electric transition rates in eight neutron-rich isotopic chains-Ra, Th, U, Pu, Cm, Cf, Fm, and No-are systematically analyzed using a quadrupole-octupole collective Hamiltonian model, with parameters determined by constrained reflection-asymmetric and axially-symmetric relativistic mean-field calculations based on the PC-PK1 energy density functional. The theoretical results of low-lying negative-parity bands, odd-even staggering, average octupole deformations <β3>, and B(E3; 31-→ 01+) show evidence of a shape transition from nearly spherical to stable octupole-deformed, and finally octupole-soft equilibrium shapes in the neutron-rich actinides. A microscopic mechanism for the onset of stable octupole deformation is also discussed in terms of the evolution of single-nucleon orbitals with deformation.

    HTML

Reference (65)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return