Processing math: 100%

Cross section and Higgs mass measurement with Higgsstrahlung at the CEPC

  • The Circular Electron Positron Collider (CEPC) is a future Higgs factory proposed by the Chinese high energy physics community. It will operate at a center-of-mass energy of 240-250 GeV. The CEPC will accumulate an integrated luminosity of 5 ab-1 over ten years of operation, producing one million Higgs bosons via the Higgsstrahlung and vector boson fusion processes. This sample allows a percent or even sub-percent level determination of the Higgs boson couplings. With GEANT4-based full simulation and a dedicated fast simulation tool, we have evaluated the statistical precisions of the Higgstrahlung cross section σZH and the Higgs mass mH measurement at the CEPC in the Z→μ+μ- channel. The statistical precision of σZH (mH) measurement could reach 0.97% (6.9 MeV) in the model-independent analysis which uses only the information from Z boson decays. For the standard model Higgs boson, the mH precision could be improved to 5.4 MeV by including the information from Higgs decays. The impact of the TPC size on these measurements is investigated. In addition, we studied the prospect of measuring the Higgs boson decaying into invisible final states at the CEPC. With the Standard Model ZH production rate, the upper limit of ß(H→inv.) could reach 1.2% at 95% confidence level.
  • [1] G. Aad et al (The ATLAS Collaboration), Phys. Lett. B, 716:1(2012)
    [2] S. Chatrchyan et al (The CMS Collaboration), Phys. Lett. B, 716:30(2012)
    [3] S. Chatrchyan et al (The CMS Collaboration), JHEP, 06:081(2013)
    [4] G. Aad et al (The ATLAS Collaboration), Phys. Lett. B, 726:88(2013)
    [5] G. Aad et al (The ATLAS Collaboration), Phys. Lett. B, 726:120(2013)
    [6] V. Khachatryan et al (The CMS Collaboration), Eur. Phys. J. C, 75:212(2015)
    [7] V. Khachatryan et al (The CMS Collaboration), Phys. Rev. D, 92:012004(2015)
    [8] G. Aad et al (The ATLAS Collaboration and CMS Collaboration), Phys. Rev. Lett., 114:191803(2015)
    [9] S. Dawson, A. Gritsan, H. Logan et al, arXiv:1310.8361
    [10] H. Baer, T. Barklow, K. Fujii et al, arXiv:1306.6352
    [11] K. Eujii et al (LCC Physics Working Group), arXiv:1506.05992
    [12] J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B, 106:292(1976)
    [13] B.L. Ioffe and V.A. Khoze, Sov. J. Part. Nucl., 9:50(1978)
    [14] B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. D, 16:1519(1977)
    [15] J.D. Bjorken, Weak-interaction Theory and Neutral Currents, in proceedings of the 1976 SLAC Summer Institute on Particle Physics
    [16] M. Carena, P. Zerwas, E. Accomando et al, arXiv:hep-ph/9602250
    [17] P.M. Zerwas, The Physics Potential, in the Workshop on e+e- Collisions at 500 GeV
    [18] C. Durig, K. Fujii, Jenny List et al, arXiv:1403.7734
    [19] Shouhua Zhu, Chin. Phys. Lett., 24:381(2007)
    [20] G. Belanger, F. Boudjema, A. Cottrant et al, Phys. Lett. B, 519:93(2001)
    [21] G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B, 595:250(2001)
    [22] M. Battaglia, D. Dominici, J.F. Gunion et al, arXiv:hepph/0402062
    [23] S. Chatrchyan et al (The CMS Collaboration), Eur. Phys. J. C, 74:2980(2014)
    [24] G. Aad et al (The ATLAS Collaboration), Phys. Rev. Lett., 112:201802(2014)
    [25] J. Yan, S. Watanuki, K. Fujii et al, arXiv:1604.07524
    [26] Q. Xiu, H. Zhu and X. Lou, arXiv:1505.01270
    [27] The ILD concept group, arXiv:1006.3396
    [28] T. Behnke, J. Brau, P. Burrows et al, arXiv:1306.6329
    [29] W. Kilian, T. Ohl and J. Reuter, Eur. Phys. J. C, 71:1742(2011)
    [30] M. Moretti, T. Ohl and J. Reuter, arXiv:hepph/0102195
    [31] C. F. von Weizscker, Z. Phys., 88:612(1934)
    [32] E. J. Williams, Phys. Rev., 45:729(1934)
    [33] V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rept. 15:181(1974)
    [34] Xin Mo, Gang Li, Manqi Ruan et al, Chin. Phys. C, 40:033001(2016)
    [35] P. Mora de Freitas and H. Videau, Detector simulation with Mokka/Geant4:present and future, in the International Workshop on Linear Colliders (LCWS 2002)
    [36] Manqi Ruan, arXiv:1403.4784
    [37] K.A. Olive et al., Chin. Phys. C, 38:090001(2014)
    [38] P. Speckmayer, A. Hocker, J. Stelzer et al, J. Phys. Conf. Ser., 219:032057(2010)
    [39] G. Cowan, K. Cranmer, E. Gross et al, Eur. Phys. J. C, 71:1554(2011)
  • [1] G. Aad et al (The ATLAS Collaboration), Phys. Lett. B, 716:1(2012)
    [2] S. Chatrchyan et al (The CMS Collaboration), Phys. Lett. B, 716:30(2012)
    [3] S. Chatrchyan et al (The CMS Collaboration), JHEP, 06:081(2013)
    [4] G. Aad et al (The ATLAS Collaboration), Phys. Lett. B, 726:88(2013)
    [5] G. Aad et al (The ATLAS Collaboration), Phys. Lett. B, 726:120(2013)
    [6] V. Khachatryan et al (The CMS Collaboration), Eur. Phys. J. C, 75:212(2015)
    [7] V. Khachatryan et al (The CMS Collaboration), Phys. Rev. D, 92:012004(2015)
    [8] G. Aad et al (The ATLAS Collaboration and CMS Collaboration), Phys. Rev. Lett., 114:191803(2015)
    [9] S. Dawson, A. Gritsan, H. Logan et al, arXiv:1310.8361
    [10] H. Baer, T. Barklow, K. Fujii et al, arXiv:1306.6352
    [11] K. Eujii et al (LCC Physics Working Group), arXiv:1506.05992
    [12] J. Ellis, M.K. Gaillard, and D.V. Nanopoulos, Nucl. Phys. B, 106:292(1976)
    [13] B.L. Ioffe and V.A. Khoze, Sov. J. Part. Nucl., 9:50(1978)
    [14] B.W. Lee, C. Quigg and H.B. Thacker, Phys. Rev. D, 16:1519(1977)
    [15] J.D. Bjorken, Weak-interaction Theory and Neutral Currents, in proceedings of the 1976 SLAC Summer Institute on Particle Physics
    [16] M. Carena, P. Zerwas, E. Accomando et al, arXiv:hep-ph/9602250
    [17] P.M. Zerwas, The Physics Potential, in the Workshop on e+e- Collisions at 500 GeV
    [18] C. Durig, K. Fujii, Jenny List et al, arXiv:1403.7734
    [19] Shouhua Zhu, Chin. Phys. Lett., 24:381(2007)
    [20] G. Belanger, F. Boudjema, A. Cottrant et al, Phys. Lett. B, 519:93(2001)
    [21] G.F. Giudice, R. Rattazzi, J.D. Wells, Nucl. Phys. B, 595:250(2001)
    [22] M. Battaglia, D. Dominici, J.F. Gunion et al, arXiv:hepph/0402062
    [23] S. Chatrchyan et al (The CMS Collaboration), Eur. Phys. J. C, 74:2980(2014)
    [24] G. Aad et al (The ATLAS Collaboration), Phys. Rev. Lett., 112:201802(2014)
    [25] J. Yan, S. Watanuki, K. Fujii et al, arXiv:1604.07524
    [26] Q. Xiu, H. Zhu and X. Lou, arXiv:1505.01270
    [27] The ILD concept group, arXiv:1006.3396
    [28] T. Behnke, J. Brau, P. Burrows et al, arXiv:1306.6329
    [29] W. Kilian, T. Ohl and J. Reuter, Eur. Phys. J. C, 71:1742(2011)
    [30] M. Moretti, T. Ohl and J. Reuter, arXiv:hepph/0102195
    [31] C. F. von Weizscker, Z. Phys., 88:612(1934)
    [32] E. J. Williams, Phys. Rev., 45:729(1934)
    [33] V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rept. 15:181(1974)
    [34] Xin Mo, Gang Li, Manqi Ruan et al, Chin. Phys. C, 40:033001(2016)
    [35] P. Mora de Freitas and H. Videau, Detector simulation with Mokka/Geant4:present and future, in the International Workshop on Linear Colliders (LCWS 2002)
    [36] Manqi Ruan, arXiv:1403.4784
    [37] K.A. Olive et al., Chin. Phys. C, 38:090001(2014)
    [38] P. Speckmayer, A. Hocker, J. Stelzer et al, J. Phys. Conf. Ser., 219:032057(2010)
    [39] G. Cowan, K. Cranmer, E. Gross et al, Eur. Phys. J. C, 71:1554(2011)
  • 加载中

Cited by

1. Wu, Y., Jiang, R., Ruzi, A. et al. Testing Bell inequalities and probing quantum entanglement at CEPC[J]. Physical Review D, 2025, 111(3): 036008. doi: 10.1103/PhysRevD.111.036008
2. Liu, M.-Y., Li, W.-D., Huang, X.-T. et al. Simulation and reconstruction of particle trajectories in the CEPC drift chamber[J]. Nuclear Science and Techniques, 2024, 35(8): 128. doi: 10.1007/s41365-024-01497-z
3. Yan, B., Lee, C. Probing light quark Yukawa couplings through angularity distributions in Higgs boson decay[J]. Journal of High Energy Physics, 2024, 2024(3): 123. doi: 10.1007/JHEP03(2024)123
4. Wang, X.-R., Yan, B. Probing the Hgg coupling through the jet charge correlation in Higgs boson decay[J]. Physical Review D, 2023, 108(5): 056010. doi: 10.1103/PhysRevD.108.056010
5. Mou, J.-L., Lü, J.-G., Sun, X.-L. et al. Time of flight detector for charged particle identification based on circular electron-positron collider | [环形正负电子对撞机带电粒子鉴别的飞行时间探测器][J]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(12): 122901. doi: 10.7498/aps.72.20222271
6. De Fabritiis, P., Malta, P.C., Neves, M.J. Lorentz-symmetry violation in the electroweak sector: Scattering processes in future e+ e− colliders[J]. Nuclear Physics B, 2022. doi: 10.1016/j.nuclphysb.2021.115628
7. Kiuchi, R., Gu, Y., Zhong, M. et al. Physics potential for the H → ZZ ∗ decay at the CEPC[J]. European Physical Journal C, 2021, 81(10): 879. doi: 10.1140/epjc/s10052-021-09653-0
8. Zheng, L., Wang, X., Yue, L. et al. Progress in Application of Rare Light Metal Beryllium and Its Alloys | [稀有轻金属铍及其合金的应用进展][J]. Xiyou Jinshu/Chinese Journal of Rare Metals, 2021, 45(4): 475-483. doi: 10.13373/j.cnki.cjrm.XY19050007
9. Tan, Y., Shi, X., Kiuchi, R. et al. Search for invisible decays of the Higgs boson produced at the CEPC[J]. Chinese Physics C, 2020, 44(12): 123001. doi: 10.1088/1674-1137/abb4d8
10. Draper, P., Kozaczuk, J., Thomas, S. Precision inclusive Higgs physics at e + e − colliders with tracking detectors and without calorimetry[J]. Journal of High Energy Physics, 2020, 2020(9): 174. doi: 10.1007/JHEP09(2020)174
11. Bai, Y., Chen, C.-H., Fang, Y.-Q. et al. Measurements of decay branching fractions of in associated production at the CEPC[J]. Chinese Physics C, 2020, 44(1): 013001. doi: 10.1088/1674-1137/44/1/013001
12. Zhang, Y.. WW fusion and Higgsstrahlung interplay in Higgs precision tests with the e-e+ →ν ν ̄ h process WW FUSION and HIGGSSTRAHLUNG INTERPLAY ... YANG ZHANG[J]. Physical Review D, 2019, 99(3): 033011. doi: 10.1103/PhysRevD.99.033011
13. Han, S., Li, G., Zhou, X. et al. Initial state radiation correction and its effect on data-taking scheme for σ B (e + e-→ Z H) measurement[J]. International Journal of Modern Physics A, 2019, 34(21): 1950118. doi: 10.1142/S0217751X19501185
14. Zhao, H., Zhu, Y.-F., Fu, C.-D. et al. The Higgs signatures at the CEPC CDR baseline[J]. Chinese Physics C, 2019, 43(2): 023001. doi: 10.1088/1674-1137/43/2/023001
15. Chen, W., Feng, F., Jia, Y. et al. Mixed electroweak-QCD corrections to e + e -.→μ + μ - H at CEPC with finite-width effect[J]. Chinese Physics C, 2019, 43(1): 013108. doi: 10.1088/1674-1137/43/1/013108
16. Zheng, L.-F., Huang, J.-Z., Wang, X.-G. et al. Corrosion of beryllium in EDM-1 fluid afterγpre-irradiation | [γ预辐照对管流冲刷条件下铍在EDM-1中腐蚀性能的影响][J]. Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2018, 40(12): 1518-1524. doi: 10.13374/j.issn2095-9389.2018.12.010
17. Banfi, A., Bond, A., Martin, A. et al. Digging for top squarks from Higgs data: from signal strengths to differential distributions[J]. Journal of High Energy Physics, 2018, 2018(11): 171. doi: 10.1007/JHEP11(2018)171
18. Frugiuele, C., Fuchs, E., Perez, G. et al. Relaxion and light (pseudo)scalars at the HL-LHC and lepton colliders[J]. Journal of High Energy Physics, 2018, 2018(10): 151. doi: 10.1007/JHEP10(2018)151
19. Qin, Q., Li, Q., Lü, C.-D. et al. Charged lepton flavor violating Higgs decays at future e+e- colliders[J]. European Physical Journal C, 2018, 78(10): 835. doi: 10.1140/epjc/s10052-018-6298-7
20. Wu, Z., Li, G., Yu, D. et al. Study of vertex optimization at the CEPC[J]. Journal of Instrumentation, 2018, 13(9): T09002. doi: 10.1088/1748-0221/13/09/T09002
21. Huang, F.P., Qian, Z., Zhang, M. Exploring dynamical CP violation induced baryogenesis by gravitational waves and colliders[J]. Physical Review D, 2018, 98(1): 015014. doi: 10.1103/PhysRevD.98.015014
22. Chen, W.-G., Wan, X., Wang, Y.-K. An optimal scheme for top quark mass measurement near the tt threshold at future e+e- colliders[J]. Chinese Physics C, 2018, 42(5): 053002. doi: 10.1088/1674-1137/42/5/053002
23. Cui, Z.-W., Li, Q., Li, G. et al. Measurement of H → μ+ μ- Production in association with a Z boson at the CEPC[J]. Chinese Physics C, 2018, 42(5): 053001. doi: 10.1088/1674-1137/42/5/053001
24. He, M., He, X.-G., Huang, C.-K. et al. Search for a heavy dark photon at future e + e − colliders[J]. Journal of High Energy Physics, 2018, 2018(3): 139. doi: 10.1007/JHEP03(2018)139
25. González-Díaz, D., Monrabal, F., Murphy, S. Gaseous and dual-phase time projection chambers for imaging rare processes[J]. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018. doi: 10.1016/j.nima.2017.09.024
26. Gao, J.. Probing light-quark Yukawa couplings via hadronic event shapes at lepton colliders[J]. Journal of High Energy Physics, 2018, 2018(1): 38. doi: 10.1007/JHEP01(2018)038
27. Chen, C., Cui, Z., Li, G. et al. H → e + e - At the CEPC: Initial state radiation effect with MadGraph[J]. Journal of Physics G: Nuclear and Particle Physics, 2018, 45(1): 015004. doi: 10.1088/1361-6471/aa9911
28. Zagoskin, T.V., Korchin, A.Y. The Higgs boson decay into ZZ decaying to identical fermion pairs[J]. International Journal of Modern Physics A, 2017, 32(27): 1750166. doi: 10.1142/S0217751X17501664
Get Citation
Zhen-Xing Chen, Ying Yang, Man-Qi Ruan, Da-Yong Wang, Gang Li, Shan Jin and Yong Ban. Cross section and Higgs mass measurement with Higgsstrahlung at the CEPC[J]. Chinese Physics C, 2017, 41(2): 023003. doi: 10.1088/1674-1137/41/2/023003
Zhen-Xing Chen, Ying Yang, Man-Qi Ruan, Da-Yong Wang, Gang Li, Shan Jin and Yong Ban. Cross section and Higgs mass measurement with Higgsstrahlung at the CEPC[J]. Chinese Physics C, 2017, 41(2): 023003.  doi: 10.1088/1674-1137/41/2/023003 shu
Milestone
Received: 2016-01-21
Revised: 2016-10-25
Fund

    Supported by the Joint Funds of the NSFC (U1232105) and CAS Hundred Talent Program (Y3515540U1)

Article Metric

Article Views(2471)
PDF Downloads(50)
Cited by(28)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Cross section and Higgs mass measurement with Higgsstrahlung at the CEPC

    Corresponding author: Zhen-Xing Chen,
    Corresponding author: Man-Qi Ruan,
    Corresponding author: Da-Yong Wang,
  • 1. State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
  • 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 3.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
  • 4.  State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
Fund Project:  Supported by the Joint Funds of the NSFC (U1232105) and CAS Hundred Talent Program (Y3515540U1)

Abstract: The Circular Electron Positron Collider (CEPC) is a future Higgs factory proposed by the Chinese high energy physics community. It will operate at a center-of-mass energy of 240-250 GeV. The CEPC will accumulate an integrated luminosity of 5 ab-1 over ten years of operation, producing one million Higgs bosons via the Higgsstrahlung and vector boson fusion processes. This sample allows a percent or even sub-percent level determination of the Higgs boson couplings. With GEANT4-based full simulation and a dedicated fast simulation tool, we have evaluated the statistical precisions of the Higgstrahlung cross section σZH and the Higgs mass mH measurement at the CEPC in the Z→μ+μ- channel. The statistical precision of σZH (mH) measurement could reach 0.97% (6.9 MeV) in the model-independent analysis which uses only the information from Z boson decays. For the standard model Higgs boson, the mH precision could be improved to 5.4 MeV by including the information from Higgs decays. The impact of the TPC size on these measurements is investigated. In addition, we studied the prospect of measuring the Higgs boson decaying into invisible final states at the CEPC. With the Standard Model ZH production rate, the upper limit of ß(H→inv.) could reach 1.2% at 95% confidence level.

    HTML

Reference (39)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return