Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms

  • In the lattice design of a diffraction-limited storage ring (DLSR) consisting of compact multi-bend achromats (MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.
      PCAS:
  • 加载中
  • [1] Z. Zhao, Reviews of Accelerator Science and Technology, 3:57(2010)
    [2] D. Einfeld, J. Schaper, and M. Plesko, in Proceeding of PAC'95(Dallas, USA, 1995), p. 177-179
    [3] R. Hettel, J. Synchrotron Radiat., 21:843-855(2014)
    [4] E. Al-Dmour et al, J. Synchrotron Radiat., 21:878-883(2014)
    [5] M. Johansson et al, J. Synchrotron Radiat., 21:884-903(2014)
    [6] P. F. Tavares et al, J. Synchrotron Radiat., 21:862-877(2014)
    [7] L. Liu et al, J. Synchrotron Radiat., 21:904-911(2014)
    [8] Y. Jiao, Y. Cai, and A. W. Chao, Phys. Rev. ST Accel. Beams, 14:054002(2011)
    [9] L. C. Teng, Fermilab Report No. TM-1269, 1984
    [10] Y. Cai, K. Bane, R. Hettel, Y. Nosochkov, M.H. Wang, and M. Borland, Phys. Rev. ST Accel. Beams, 15:054002(2012)
    [11] Y. Jiao and G. Xu, Chin. Phys. C, 37:117005(2013)
    [12] M. Borland et al, J. Synchrotron Radiat., 21:912-936(2014)
    [13] Y. Jiao and G. Xu, Chin. Phys. C, 39:067004(2015)
    [14] L. Farvacque et al, in Proceeding of IPAC2013(Shanghai, China, 2013), p. 79-81
    [15] M. Borland et al, in Proceeding of IPAC2015(Richmond, USA, 2015), p. 1776-1778
    [16] G. Xu, Y. Jiao, and Y.M. Peng, Chin. Phys. C, 40:027001(2016)
    [17] F. Willeke, in Proceeding of IPAC2015(Richmond, USA, 2015), p. 11-16
    [18] Y. Jiao and Z. Duan, Nucl. Instrum. Methods Phys. Res., Sect. A, 841:97-103(2017)
    [19] A. Terebilo, SLAC-PUB-8732, 2001
    [20] L. Nadolski and J. Laskar, Phys. Rev. ST Accel. Beams, 6:114801(2003)
    [21] G. Xu et al, in Proceeding of IPAC2016(Busan, Korea, 2016), WEOAA02
    [22] M. Aiba, M. Bge, F. Marcellini, . Sa Hernndez, and A. Streun, Phys. Rev. ST Accel. Beams, 18:020701(2015)
    [23] Y. Jiao, Chin. Phys. C, 40:077002(2016)
    [24] I. V. Bazarov and C.K. Sinclair, Phys. Rev. ST Accel. Beams, 8:034202(2005)
    [25] L. Yang et al, Nucl. Instrum. Methods Phys. Res., Sect. A, 609:50-57(2009)
    [26] M. Borland et al, in Proceeding of PAC'09(Vancouver, Canada, 2009), p. 3850-3852
    [27] L. Yang, Y. Li, W. Guo, and S. Krinsky, Phys. Rev. ST Accel. Beams, 14:054001(2011)
    [28] W. Gao, L. Wang, and W. Li, Phys. Rev. ST Accel. Beams, 14:094001(2011)
    [29] Z. Bai, L. Wang, and W. Li, in Proceeding of IPAC2011(San Sebastin, Spain, 2011), p. 2271-2273
    [30] X. Pang and L.J. Rybarcyk, Nucl. Instrum. Methods Phys. Res., Sect. A, 741:124-129(2014)
    [31] X. Huang and J. Safranek, Nucl. Instrum. Methods Phys. Res., Sect. A, 757:48-53(2014)
    [32] K. Deb, IEEE Trans. Evol. Comput., 6:182(2002)
    [33] S. K. Tian, HEPS internal report, 2016
    [34] J. Laskar, in Proceeding of PAC'03(Portland, USA, 2003), p. 378-382
  • 加载中

Get Citation
Yi Jiao and Gang Xu. Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms[J]. Chinese Physics C, 2017, 41(2): 027001. doi: 10.1088/1674-1137/41/2/027001
Yi Jiao and Gang Xu. Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms[J]. Chinese Physics C, 2017, 41(2): 027001.  doi: 10.1088/1674-1137/41/2/027001 shu
Milestone
Received: 2016-07-26
Fund

    Supported by NSFC (11475202, 11405187) and Youth Innovation Promotion Association CAS (2015009)

Article Metric

Article Views(1529)
PDF Downloads(50)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Optimizing the lattice design of a diffraction-limited storage ring with a rational combination of particle swarm and genetic algorithms

    Corresponding author: Yi Jiao,
  • 1. Key Laboratory of Particle Acceleration Physics and Technology, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049
Fund Project:  Supported by NSFC (11475202, 11405187) and Youth Innovation Promotion Association CAS (2015009)

Abstract: In the lattice design of a diffraction-limited storage ring (DLSR) consisting of compact multi-bend achromats (MBAs), it is challenging to simultaneously achieve an ultralow emittance and a satisfactory nonlinear performance, due to extremely large nonlinearities and limited tuning ranges of the element parameters. Nevertheless, in this paper we show that the potential of a DLSR design can be explored with a successive and iterative implementation of the multi-objective particle swarm optimization (MOPSO) and multi-objective genetic algorithm (MOGA). For the High Energy Photon Source, a planned kilometer-scale DLSR, optimizations indicate that it is feasible to attain a natural emittance of about 50 pm·rad, and simultaneously realize a sufficient ring acceptance for on-axis longitudinal injection, by using a hybrid MBA lattice. In particular, this study demonstrates that a rational combination of the MOPSO and MOGA is more effective than either of them alone, in approaching the true global optima of an explorative multi-objective problem with many optimizing variables and local optima.

    HTML

Reference (34)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return