Processing math: 100%

Exotic decays of the 125 GeV Higgs boson at future e+e- colliders

  • The discovery of unexpected properties of the Higgs boson would o er an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic nal states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, O(10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a rst step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation.
  • [1] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30-61(2012)
    [2] G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 716: 1-29 (2012)
    [3] R. A. Flores and M. Sher, Annals Phys., 148: 95 (1983)
    [4] J. F. Gunion and H. E. Haber, Nucl. Phys. B, 272: 1 (1986)
    [5] A. Djouadi, Phys. Rept., 459: 1-241 (2008)
    [6] B. Gripaios, A. Pomarol, F. Riva et al, JHEP, 04: 70 (2009)
    [7] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Rev. D, 59: 086004 (1999)
    [8] L. Randall and R. Sundrum, Phys. Rev. Lett., 83: 3370-3373 (1999)
    [9] L. Randall and R. Sundrum, Phys. Rev. Lett., 83: 4690-4693 (1999)
    [10] H. Georgi and S. L. Glashow, Phys. Rev. Lett., 32: 438-441 (1974)
    [11] S. Dawson et al., arXiv:1310.8361
    [12] CMS Collaboration, arXiv:1307.7135
    [13] https://cds.cern.ch/record/2221747/files/DP2016_064.pdf, retrieved 4th October 2016
    [14] K. Fujii et al., arXiv:1506.05992
    [15] M. Bicer et al (TLEP Design Study Working Group Collaboration), JHEP, 01: 164 (2014)
    [16] S. Weinberg, Physica A, 96: 327-340 (1979)
    [17] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268: 621-653 (1986)
    [18] B. Grzadkowski, M. Iskrzynski, M. Misiak et al, JHEP, 10: 85 (2010)
    [19] J. Ellis, V. Sanz and T. You, JHEP, 03: 157 (2015)
    [20] A. Biektter, A. Knochel, M. Krmer et al, Phys. Rev. D, 91: 055029 (2015)
    [21] R. Contino, A. Falkowski, F. Goertz et al, JHEP, 07: 144 (2016)
    [22] D. Curtin, R. Essig, S. Gori et al, Phys. Rev. D, 90: 075004 (2014)
    [23] D. de Florian et al, arXiv:1610.07922
    [24] B. Patt and F. Wilczek, arXiv: hepph/0605188
    [25] A. Arbey, M. Battaglia, and F. Mahmoudi, Eur. Phys. J. C, 72: 2169 (2012)
    [26] P. S. Bhupal Dev, S. Mondal, B. Mukhopadhyaya et al, JHEP, 09: 110 (2012)
    [27] T. Han, Z. Liu, and A. Natarajan, JHEP, 11: 8 (2013)
    [28] S. Banerjee, P. S. B. Dev, S. Monda et al, JHEP, 10: 221 (2013)
    [29] M. R. Buckley, D. Hooper, and J. Kumar, Phys. Rev. D, 88: 063532 (2013)
    [30] K. Hagiwara, S. Mukhopadhyay, and J. Nakamura, Phys. Rev. D, 89: 015023 (2014)
    [31] G. Blanger, G. Drieu La Rochelle, B. Dumont et al, Phys. Lett. B, 726: 773-780 (2013)
    [32] A. Pierce, N. R. Shah, and K. Freese, arXiv:1309.7351
    [33] J. Cao, C. Han, L. Wu et al, JHEP, 05: 56 (2014)
    [34] T. Han, Z. Liu, and S. Su, JHEP, 08: 93 (2014)
    [35] J. Huang, T. Liu, L.-T. Wang et al, Phys. Rev. D, 90: 115006 (2014)
    [36] J. Huang, T. Liu, L.-T. Wang et al, Phys. Rev. Lett., 112: 221803 (2014)
    [37] J. Fan, M. Reece, and J. T. Ruderman, JHEP, 11: 12 (2011)
    [38] Q. Xiu, H. Zhu, X. Lou et al, Chin. Phys. C, 40: 053001 (2016)
    [39] M. Greco, T. Han, and Z. Liu, Phys. Lett. B, 763: 409-415 (2016)
    [40] R. Essig et al., arXiv:1311.0029
    [41] P. J. Fox, J. Liu, D. Tucker-Smith et al, Phys. Rev. D, 84: 115006 (2011)
    [42] Z. Chacko, H.-S. Goh, and R. Harnik, Phys. Rev. Lett., 96: 231802 (2006)
    [43] Q.-F. Sun, F. Feng, Y. Jia et al, arXiv:1609.03995
    [44] Y. Gong, Z. Li, X. Xu et al, arXiv:1609.03955
    [45] J. Alwall, R. Frederix, S. Frixione et al, JHEP, 1407: 79 (2014)
    [46] G. Aad et al (ATLAS Collaboration), JHEP, 11: 206 (2015)
    [47] V. Khachatryan et al (CMS Collaboration), arXiv:1610.09218
    [48] M. Aaboud et al (ATLAS Collaboration), Eur. Phys. J. C, 76: 605 (2016)
    [49] https://cds.cern.ch/record/2135985/files/HIG-14-041-pas.pdf, retrieved 3rd March 2016
    [50] G. Aad et al (ATLAS Collaboration), Phys. Rev. D, 92: 052002 (2015)
    [51] G. Aad et al (ATLAS Collaboration), Eur. Phys. J. C, 76: 210 (2016)
    [52] D. Curtin, R. Essig, and Y.-M. Zhong, JHEP, 06: 25 (2015)
    [53] J. R. Andersen et al, arXiv:1307.1347
    [54] R. Harnik, A. Martin, T. Okui et al, Phys. Rev. D, 88: 076009 (2013)
    [55] G. Li, H.-R. Wang, and S.-h. Zhu, Phys. Rev. D, 93: 055038 (2016)
    [56] N. Craig, J. Gu, Z. Liu et al, JHEP, 03: 50 (2016)
    [57] G. Li, Y.-n. Mao, C. Zhang et al, arXiv:1611.08518
    [58] J. Gao, arXiv:1608.01746
    [59] Q.-H. Cao, H.-R. Wang, and Y. Zhang, Chin. Phys. C, 39: 113102 (2015)
    [60] https://cds.cern.ch/record/1983181/files/HIG-14-024-pas.pdf, retrieved 27th January 2015
  • [1] S. Chatrchyan et al (CMS Collaboration), Phys. Lett. B, 716: 30-61(2012)
    [2] G. Aad et al (ATLAS Collaboration), Phys. Lett. B, 716: 1-29 (2012)
    [3] R. A. Flores and M. Sher, Annals Phys., 148: 95 (1983)
    [4] J. F. Gunion and H. E. Haber, Nucl. Phys. B, 272: 1 (1986)
    [5] A. Djouadi, Phys. Rept., 459: 1-241 (2008)
    [6] B. Gripaios, A. Pomarol, F. Riva et al, JHEP, 04: 70 (2009)
    [7] N. Arkani-Hamed, S. Dimopoulos, and G. R. Dvali, Phys. Rev. D, 59: 086004 (1999)
    [8] L. Randall and R. Sundrum, Phys. Rev. Lett., 83: 3370-3373 (1999)
    [9] L. Randall and R. Sundrum, Phys. Rev. Lett., 83: 4690-4693 (1999)
    [10] H. Georgi and S. L. Glashow, Phys. Rev. Lett., 32: 438-441 (1974)
    [11] S. Dawson et al., arXiv:1310.8361
    [12] CMS Collaboration, arXiv:1307.7135
    [13] https://cds.cern.ch/record/2221747/files/DP2016_064.pdf, retrieved 4th October 2016
    [14] K. Fujii et al., arXiv:1506.05992
    [15] M. Bicer et al (TLEP Design Study Working Group Collaboration), JHEP, 01: 164 (2014)
    [16] S. Weinberg, Physica A, 96: 327-340 (1979)
    [17] W. Buchmuller and D. Wyler, Nucl. Phys. B, 268: 621-653 (1986)
    [18] B. Grzadkowski, M. Iskrzynski, M. Misiak et al, JHEP, 10: 85 (2010)
    [19] J. Ellis, V. Sanz and T. You, JHEP, 03: 157 (2015)
    [20] A. Biektter, A. Knochel, M. Krmer et al, Phys. Rev. D, 91: 055029 (2015)
    [21] R. Contino, A. Falkowski, F. Goertz et al, JHEP, 07: 144 (2016)
    [22] D. Curtin, R. Essig, S. Gori et al, Phys. Rev. D, 90: 075004 (2014)
    [23] D. de Florian et al, arXiv:1610.07922
    [24] B. Patt and F. Wilczek, arXiv: hepph/0605188
    [25] A. Arbey, M. Battaglia, and F. Mahmoudi, Eur. Phys. J. C, 72: 2169 (2012)
    [26] P. S. Bhupal Dev, S. Mondal, B. Mukhopadhyaya et al, JHEP, 09: 110 (2012)
    [27] T. Han, Z. Liu, and A. Natarajan, JHEP, 11: 8 (2013)
    [28] S. Banerjee, P. S. B. Dev, S. Monda et al, JHEP, 10: 221 (2013)
    [29] M. R. Buckley, D. Hooper, and J. Kumar, Phys. Rev. D, 88: 063532 (2013)
    [30] K. Hagiwara, S. Mukhopadhyay, and J. Nakamura, Phys. Rev. D, 89: 015023 (2014)
    [31] G. Blanger, G. Drieu La Rochelle, B. Dumont et al, Phys. Lett. B, 726: 773-780 (2013)
    [32] A. Pierce, N. R. Shah, and K. Freese, arXiv:1309.7351
    [33] J. Cao, C. Han, L. Wu et al, JHEP, 05: 56 (2014)
    [34] T. Han, Z. Liu, and S. Su, JHEP, 08: 93 (2014)
    [35] J. Huang, T. Liu, L.-T. Wang et al, Phys. Rev. D, 90: 115006 (2014)
    [36] J. Huang, T. Liu, L.-T. Wang et al, Phys. Rev. Lett., 112: 221803 (2014)
    [37] J. Fan, M. Reece, and J. T. Ruderman, JHEP, 11: 12 (2011)
    [38] Q. Xiu, H. Zhu, X. Lou et al, Chin. Phys. C, 40: 053001 (2016)
    [39] M. Greco, T. Han, and Z. Liu, Phys. Lett. B, 763: 409-415 (2016)
    [40] R. Essig et al., arXiv:1311.0029
    [41] P. J. Fox, J. Liu, D. Tucker-Smith et al, Phys. Rev. D, 84: 115006 (2011)
    [42] Z. Chacko, H.-S. Goh, and R. Harnik, Phys. Rev. Lett., 96: 231802 (2006)
    [43] Q.-F. Sun, F. Feng, Y. Jia et al, arXiv:1609.03995
    [44] Y. Gong, Z. Li, X. Xu et al, arXiv:1609.03955
    [45] J. Alwall, R. Frederix, S. Frixione et al, JHEP, 1407: 79 (2014)
    [46] G. Aad et al (ATLAS Collaboration), JHEP, 11: 206 (2015)
    [47] V. Khachatryan et al (CMS Collaboration), arXiv:1610.09218
    [48] M. Aaboud et al (ATLAS Collaboration), Eur. Phys. J. C, 76: 605 (2016)
    [49] https://cds.cern.ch/record/2135985/files/HIG-14-041-pas.pdf, retrieved 3rd March 2016
    [50] G. Aad et al (ATLAS Collaboration), Phys. Rev. D, 92: 052002 (2015)
    [51] G. Aad et al (ATLAS Collaboration), Eur. Phys. J. C, 76: 210 (2016)
    [52] D. Curtin, R. Essig, and Y.-M. Zhong, JHEP, 06: 25 (2015)
    [53] J. R. Andersen et al, arXiv:1307.1347
    [54] R. Harnik, A. Martin, T. Okui et al, Phys. Rev. D, 88: 076009 (2013)
    [55] G. Li, H.-R. Wang, and S.-h. Zhu, Phys. Rev. D, 93: 055038 (2016)
    [56] N. Craig, J. Gu, Z. Liu et al, JHEP, 03: 50 (2016)
    [57] G. Li, Y.-n. Mao, C. Zhang et al, arXiv:1611.08518
    [58] J. Gao, arXiv:1608.01746
    [59] Q.-H. Cao, H.-R. Wang, and Y. Zhang, Chin. Phys. C, 39: 113102 (2015)
    [60] https://cds.cern.ch/record/1983181/files/HIG-14-024-pas.pdf, retrieved 27th January 2015
  • 加载中

Cited by

1. Roche, S.T., Carlson, B.T., Hayes, C.R. et al. Illuminating all-hadronic final states with a photon: Exotic decays of the Higgs boson to four bottom quarks in vector boson fusion plus gamma at hadron colliders[J]. Physical Review D, 2024, 109(11): 115029. doi: 10.1103/PhysRevD.109.115029
2. Li, P., Liu, Z., Lyu, K.-F. Higgs boson width and couplings at high energy muon colliders with forward muon detection[J]. Physical Review D, 2024, 109(7): 073009. doi: 10.1103/PhysRevD.109.073009
3. Curtin, D., Grewal, J.S. Long-lived particle decays at the proposed MATHUSLA experiment[J]. Physical Review D, 2024, 109(7): 075017. doi: 10.1103/PhysRevD.109.075017
4. Hensel, C.. Higgs Physics with ILC[J]. Proceedings of Science, 2024.
5. Black, K.M., Jindariani, S., Li, D. et al. Muon Collider Forum report[J]. Journal of Instrumentation, 2024, 19(2): T02015. doi: 10.1088/1748-0221/19/02/T02015
6. Fang, Y., Xin, S. Physics Highlights at CEPC[J]. Nuclear and Particle Physics Proceedings, 2023. doi: 10.1016/j.nuclphysbps.2023.04.011
7. Bhattiprolu, P.N., Wells, J.D. Depleted Higgs boson: Searches for universal coupling suppression, invisible decays, and mixed-in scalars[J]. Physical Review D, 2023, 107(5): 055022. doi: 10.1103/PhysRevD.107.055022
8. Robens, T.. A short overview on low mass scalars at future lepton colliders - LCWS23 proceedings -[J]. 2023.
9. Carena, M., Kozaczuk, J., Liu, Z. et al. Probing the Electroweak Phase Transition with Exotic Higgs Decays[J]. Letters in High Energy Physics, 2023. doi: 10.31526/LHEP.2023.432
10. De Blas, J., Gu, J., Liu, Z. Higgs boson precision measurements at a 125 GeV muon collider[J]. Physical Review D, 2022, 106(7): 073007. doi: 10.1103/PhysRevD.106.073007
11. Hall, E., McGehee, R., Murayama, H. et al. Asymmetric dark matter may not be light[J]. Physical Review D, 2022, 106(7): 075008. doi: 10.1103/PhysRevD.106.075008
12. Cepeda, M., Gori, S., Outschoorn, V.I.M. et al. Exotic Higgs Decays[J]. Annual Review of Nuclear and Particle Science, 2022. doi: 10.1146/annurev-nucl-102319-024147
13. Al Ali, H., Arkani-Hamed, N., Banta, I. et al. The muon Smasher's guide[J]. Reports on Progress in Physics, 2022, 85(8): 084201. doi: 10.1088/1361-6633/ac6678
14. Majernik, N., Andonian, G., Williams, O.B. et al. Positron driven high-field terahertz waves via dielectric wakefield interaction[J]. Physical Review Research, 2022, 4(2): 023065. doi: 10.1103/PhysRevResearch.4.023065
15. Robens, T.. A Short Overview on Low Mass Scalars at Future Lepton Colliders[J]. Universe, 2022, 8(5): 286. doi: 10.3390/universe8050286
16. Sakurai, K., Yin, W. Phenomenology of CP-even ALP[J]. Journal of High Energy Physics, 2022, 2022(4): 113. doi: 10.1007/JHEP04(2022)113
17. Curtin, D., Gryba, S., Setford, J. et al. Resurrecting the fraternal twin WIMP miracle[J]. Physical Review D, 2022, 105(3): 035033. doi: 10.1103/PhysRevD.105.035033
18. Jung, S., Liu, Z., Wang, L.-T. et al. Probing Higgs boson exotic decays at the LHC with machine learning[J]. Physical Review D, 2022, 105(3): 035008. doi: 10.1103/PhysRevD.105.035008
19. Giffin, P., Lewis, I.M., Zheng, Y.-J. Higgs production in association with a dark-Z at future electron positron colliders[J]. Journal of Physics G: Nuclear and Particle Physics, 2022, 49(1): 015003. doi: 10.1088/1361-6471/ac38c1
20. Agrawal, P., Bauer, M., Beacham, J. et al. Feebly-interacting particles: FIPs 2020 workshop report[J]. European Physical Journal C, 2021, 81(11): 1015. doi: 10.1140/epjc/s10052-021-09703-7
21. Monni, P.F., Zanderighi, G. QCD at the FCC-ee[J]. European Physical Journal Plus, 2021, 136(11): 1162. doi: 10.1140/epjp/s13360-021-02105-4
22. Reece, M.. FCC-ee and the high-energy physics landscape[J]. European Physical Journal Plus, 2021, 136(11): 1102. doi: 10.1140/epjp/s13360-021-02104-5
23. de Blas, J.. New physics at the FCC-ee: indirect discovery potential[J]. European Physical Journal Plus, 2021, 136(9): 897. doi: 10.1140/epjp/s13360-021-01847-5
24. Hu, Y.L., Sun, C.L., Shen, X.M. et al. Hadronic decays of Higgs boson at NNLO matched with parton shower[J]. Journal of High Energy Physics, 2021, 2021(8): 122. doi: 10.1007/JHEP08(2021)122
25. Liu, J., Wang, X.-P., Xie, K.-P. Searching for lepton portal dark matter with colliders and gravitational waves[J]. Journal of High Energy Physics, 2021, 2021(6): 149. doi: 10.1007/JHEP06(2021)149
26. Ma, S., Wang, K., Zhu, J. Higgs decay to light (pseudo)scalars in the semi-constrained NMSSM[J]. Chinese Physics C, 2021, 45(2): 023113. doi: 10.1088/1674-1137/abce4f
27. Chiang, C.-W., Huang, D., Lu, B.-Q. Electroweak phase transition confronted with dark matter detection constraints[J]. Journal of Cosmology and Astroparticle Physics, 2021, 2021(1): 035. doi: 10.1088/1475-7516/2021/01/035
28. Barman, R.K., Belanger, G., Godbole, R.M. Status of low mass LSP in SUSY[J]. European Physical Journal: Special Topics, 2020, 229(21): 3159-3185. doi: 10.1140/epjst/e2020-000198-1
29. Draper, P., Kozaczuk, J., Thomas, S. Precision inclusive Higgs physics at e + e − colliders with tracking detectors and without calorimetry[J]. Journal of High Energy Physics, 2020, 2020(9): 174. doi: 10.1007/JHEP09(2020)174
30. Carena, M., Liu, Z., Wang, Y. Electroweak phase transition with spontaneous Z 2-breaking[J]. Journal of High Energy Physics, 2020, 2020(8): 107. doi: 10.1007/JHEP08(2020)107
31. Kozaczuk, J., Ramsey-Musolf, M.J., Shelton, J. Exotic Higgs boson decays and the electroweak phase transition[J]. Physical Review D, 2020, 101(11): 115035. doi: 10.1103/PhysRevD.101.115035
32. Wang, K., Zhu, J. A novel scenario in the semi-constrained NMSSM[J]. Journal of High Energy Physics, 2020, 2020(6): 78. doi: 10.1007/JHEP06(2020)078
33. Wang, K., Zhu, J. Funnel annihilations of light dark matter and the invisible decay of the Higgs boson[J]. Physical Review D, 2020, 101(9): 095028. doi: 10.1103/PhysRevD.101.095028
34. Wang, Z.S., Wang, K. Physics with far detectors at future lepton colliders[J]. Physical Review D, 2020, 101(7): 075046. doi: 10.1103/PhysRevD.101.075046
35. Hall, E., Konstandin, T., McGehee, R. et al. Baryogenesis from a dark first-order phase transition[J]. Journal of High Energy Physics, 2020, 2020(4): 42. doi: 10.1007/JHEP04(2020)042
36. Chiu, W.H., Liu, Z., Wang, L.-T. Probing flavor nonuniversal theories through Higgs physics at the LHC and future colliders[J]. Physical Review D, 2020, 101(3): 035045. doi: 10.1103/PhysRevD.101.035045
37. Cheng, H.-C., Li, L., Salvioni, E. et al. Light hidden mesons through the Z portal[J]. Journal of High Energy Physics, 2019, 2019(11): 31. doi: 10.1007/JHEP11(2019)031
38. Nelson, A.E., Park, M., Walker, D.G.E. Composite Higgs models with a hidden sector[J]. Physical Review D, 2019, 100(7): 076015. doi: 10.1103/PhysRevD.100.076015
39. Curtin, D., Drewes, M., McCullough, M. et al. Long-lived particles at the energy frontier: The MATHUSLA physics case[J]. Reports on Progress in Physics, 2019, 82(11): 116201. doi: 10.1088/1361-6633/ab28d6
40. Gao, J.. Higgs boson decay into four bottom quarks in the SM and beyond[J]. Journal of High Energy Physics, 2019, 2019(8): 174. doi: 10.1007/JHEP08(2019)174
41. Abada, A., Abbrescia, M., AbdusSalam, S.S. et al. FCC Physics Opportunities: Future Circular Collider Conceptual Design Report Volume 1[J]. European Physical Journal C, 2019, 79(6): 474. doi: 10.1140/epjc/s10052-019-6904-3
42. Abada, A., Abbrescia, M., AbdusSalam, S.S. et al. FCC-ee: The Lepton Collider: Future Circular Collider Conceptual Design Report Volume 2[J]. European Physical Journal: Special Topics, 2019, 228(2): 261-623. doi: 10.1140/epjst/e2019-900045-4
43. Alipour-Fard, S., Craig, N., Jiang, M. et al. Long live the Higgs factory: Higgs decays to long-lived particles at future lepton colliders[J]. Chinese Physics C, 2019, 43(5): 053101. doi: 10.1088/1674-1137/43/5/053101
44. Kim, Y.G., Park, C.B., Shin, S. Collider probes of singlet fermionic dark matter scenarios for the Fermi gamma-ray excess[J]. Journal of High Energy Physics, 2018, 2018(12): 36. doi: 10.1007/JHEP12(2018)036
45. Frugiuele, C., Fuchs, E., Perez, G. et al. Relaxion and light (pseudo)scalars at the HL-LHC and lepton colliders[J]. Journal of High Energy Physics, 2018, 2018(10): 151. doi: 10.1007/JHEP10(2018)151
46. Qin, Q., Li, Q., Lü, C.-D. et al. Charged lepton flavor violating Higgs decays at future e+e- colliders[J]. European Physical Journal C, 2018, 78(10): 835. doi: 10.1140/epjc/s10052-018-6298-7
47. Chiang, C.-W., He, X.-G., Li, G. Measuring the ratio of HW W and HZZ couplings through W+ W− H production[J]. Journal of High Energy Physics, 2018, 2018(8): 126. doi: 10.1007/JHEP08(2018)126
48. Liu, J., Wang, L.-T., Wang, X.-P. et al. Exposing the dark sector with future Z factories[J]. Physical Review D, 2018, 97(9): 095044. doi: 10.1103/PhysRevD.97.095044
49. Mao, Y.-N.. Spontaneous CP -violation in the simplest little Higgs model and its future collider tests: The scalar sector[J]. Physical Review D, 2018, 97(7): 076011. doi: 10.1103/PhysRevD.97.075031
50. Barklow, T., Fujii, K., Jung, S. et al. Improved formalism for precision Higgs coupling fits[J]. Physical Review D, 2018, 97(5): 054515. doi: 10.1103/PhysRevD.97.053003
51. Mangano, M.L.. TASI lectures on Future Colliders[J]. Proceedings of Science, 2018.
52. Gu, J., Li, H., Liu, Z. et al. Learning from Higgs physics at future Higgs factories[J]. Journal of High Energy Physics, 2017, 2017(12): 153. doi: 10.1007/JHEP12(2017)153
53. Durieux, G., Grojean, C., Gu, J. et al. The leptonic future of the Higgs[J]. Journal of High Energy Physics, 2017, 2017(9): 14. doi: 10.1007/JHEP09(2017)014
Get Citation
Zhen Liu, Lian-Tao Wang and Hao Zhang. Exotic decays of the 125 GeV Higgs boson at future e+e- colliders[J]. Chinese Physics C, 2017, 41(6): 063102. doi: 10.1088/1674-1137/41/6/063102
Zhen Liu, Lian-Tao Wang and Hao Zhang. Exotic decays of the 125 GeV Higgs boson at future e+e- colliders[J]. Chinese Physics C, 2017, 41(6): 063102.  doi: 10.1088/1674-1137/41/6/063102 shu
Milestone
Received: 2017-01-16
Fund

    Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)}

Article Metric

Article Views(2321)
PDF Downloads(15)
Cited by(53)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Exotic decays of the 125 GeV Higgs boson at future e+e- colliders

    Corresponding author: Zhen Liu,
    Corresponding author: Lian-Tao Wang,
    Corresponding author: Hao Zhang,
  • 1.  Theoretical Physics Department, Fermilab, Batavia, IL 60510, USA
  • 2.  Kavli Institute for Cosmological Physics and the Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
  • 3.  Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Fund Project:  Supported by Fermi Research Alliance, LLC (DE-AC02-07CH11359) with the U.S. Department of Energy, DOE (DE-SC0013642), IHEP(Y6515580U1), and IHEP Innovation (Y4545171Y2)}

Abstract: The discovery of unexpected properties of the Higgs boson would o er an intriguing opportunity to shed light on some of the most profound puzzles in particle physics. Beyond Standard Model (BSM) decays of the Higgs boson could reveal new physics in a direct manner. Future electron-positron lepton colliders operating as Higgs factories, including CEPC, FCC-ee and ILC, with the advantages of a clean collider environment and large statistics, could greatly enhance sensitivity in searching for these BSM decays. In this work, we perform a general study of Higgs exotic decays at future e+e- lepton colliders, focusing on the Higgs decays with hadronic nal states and/or missing energy, which are very challenging for the High-Luminosity program of the Large Hadron Collider (HL-LHC). We show that with simple selection cuts, O(10-3-10-5) limits on the Higgs exotic decay branching fractions can be achieved using the leptonic decaying spectator Z boson in the associated production mode e+e-→ZH. We further discuss the interplay between detector performance and Higgs exotic decays, and other possibilities of exotic decays. Our work is a rst step in a comprehensive study of Higgs exotic decays at future lepton colliders, which is a key area of Higgs physics that deserves further investigation.

    HTML

Reference (60)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return