Scale-invariance in soft gamma repeaters

  • The statistical properties of the soft gamma repeater SGR J1550-5418 are investigated carefully. We find that the cumulative distributions of fluence, peak flux and duration can be well fitted by a bent power law, while the cumulative distribution of waiting time follows a simple power law. In particular, the probability density functions of fluctuations of fluence, peak flux, and duration have a sharp peak and fat tails, which can be well fitted by a q-Gaussian function. The q values keep approximately steady for different scale intervals, indicating a scale-invariant structure of soft gamma repeaters. Those results support that the origin of soft gamma repeaters is crustquakes of neutron stars with extremely strong magnetic fields.
      PCAS:
  • 加载中
  • [1] E. P. Mazets, S. V. Golenetskii, V. N. Il'inskii et al, Nature,282: 587 (1979)
    [2] E. P. Mazets, S. V. Golenetskij, and Y. A. Guryan, Soviet AstronomyLetters, 5: 343 (1979)
    [3] K. Hurley, Advances in Space Research, 47: 1326 (2011).
    [4] P. M. Woods, Advances in Space Research, 33: 630 (2004)
    [5] E. Ggş, C. Kouveliotou, P. M. Woods et al, The AstrophysicalJournal, 558: 228 (2001)
    [6] R. L. Aptekar, D. D. Frederiks, S. V. Golenetskii et al, TheAstrophysical Journal Supplement Series, 137: 227 (2001)
    [7] S. Mereghetti, The Astronomy and Astrophysics Review, 15:225 (2008)
    [8] R. C. Duncan and C. Thompson, The Astrophysical Journal,392: L9 (1992)
    [9] C. Kouveliotou, S. Dieters, T. Strohmayer et al, Nature, 393:235 (1998)
    [10] C. Kouveliotou, T. Strohmayer, K. Hurley et al, The AstrophysicalJournal, 510: L115 (1999)
    [11] C. Thompson, M. Lyutikov, and S. Kulkarni, The AstrophysicalJournal, 574: 332 (2002)
    [12] C. Thompson and R. C. Duncan, The Astrophysical Journal,473: 322 (1996)
    [13] F. P. Gavriil, V. M. Kaspi, and P. M. Woods, Nature, 419: 142(2002)
    [14] R. C. Lamb and T. H. Markert, The Astrophysical Journal,244: 94 (1981)
    [15] M. Sugizaki, K. Mitsuda, H. Kaneda et al, The AstrophysicalJournal Supplement Series, 134: 77 (2001)
    [16] J. D. Gelfand and B. M. Gaensler, The Astrophysical Journal,667: 1111 (2007)
    [17] F. Camilo, S. M. Ransom, J. P. Halpern et al, The AstrophysicalJournal Letters, 666: L93 (2007)
    [18] G. L. Israel, P. Esposito, N. Rea et al, Monthly Notices of the Royal Astronomical Society, 408: 1387 (2010)
    [19] P. Scholz and V. M. Kaspi, The Astrophysical Journal, 739: 94 (2011)
    [20] A. von Kienlin, D. Gruber, C. Kouveliotou et al, The Astrophysical Journal, 755: 150 (2012)
    [21] A. J. van der Horst, C. Kouveliotou, N. M. Gorgone et al, The Astrophysical Journal, 749: 122 (2012)
    [22] G. Younes, C. Kouveliotou, A. J. van der Horst et al, The Astrophysical Journal, 785: 52 (2014)
    [23] D. Palmer, GRB Coordinates Network, Circular Service, 8901(2009)
    [24] C. Kouveliotou, A. von Kienlin, G. Fishman et al, GRB Coordinates Network, Circular Service, 8915 (2009)
    [25] A. C. Collazzi, C. Kouveliotou, A. J. van der Horst et al, The Astrophysical Journal Supplement Series, 218: 11 (2015)
    [26] B. Cheng, R. I. Epstein, R. A. Guyer et al, Nature, 382: 518(1996)
    [27] Z. Prieskorn and P. Kaaret, The Astrophysical Journal, 755:1 (2012)
    [28] E. Ggş, P. M. Woods, C. Kouveliotou et al, The Astrophysical Journal Letters, 526: L93 (1999)
    [29] E. Ggş, P. M. Woods, C. Kouveliotou et al, The Astrophysical Journal Letters: 532: L121 (2000)
    [30] F. Y. Wang and H. Yu (2016), arXiv:1604.08676
    [31] P. Wang, Z. Chang, H. Wang et al, The European Physical Journal B, 88: 1 (2015)
    [32] F. Caruso, A. Pluchino, V. Latora et al, Phys. Rev. E, 75: 055101 (2007)
    [33] D. Freedman and P. Diaconis, Probability theory and related fields, 57: 453 (1981)
    [34] G. A. F. Seber and C. J. Wild, Nonlinear regression (Hoboken, NJ : Wiley-Interscience, 2003)
    [35] P. R. Bevington and D. K. Robinson, Data reduction and error analysis for the Physical Sciences (McGraw-Hill, 2003)
    [36] C. Guidorzi, S. Dichiara, and L. Amati, AA, 589: A98 (2016)
  • 加载中

Get Citation
null. Scale-invariance in soft gamma repeaters[J]. Chinese Physics C, 2017, 41(6): 065104. doi: 10.1088/1674-1137/41/6/065104
null. Scale-invariance in soft gamma repeaters[J]. Chinese Physics C, 2017, 41(6): 065104.  doi: 10.1088/1674-1137/41/6/065104 shu
Milestone
Received: 2016-11-28
Revised: 2017-01-20
Fund

    Supported by National Natural Science Foundation of China (11375203, 11675182, 11690022, 11603005), and Fundamental Research Funds for Central Universities (106112016CDJCR301206)}

Article Metric

Article Views(1140)
PDF Downloads(21)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Scale-invariance in soft gamma repeaters

Fund Project:  Supported by National Natural Science Foundation of China (11375203, 11675182, 11690022, 11603005), and Fundamental Research Funds for Central Universities (106112016CDJCR301206)}

Abstract: The statistical properties of the soft gamma repeater SGR J1550-5418 are investigated carefully. We find that the cumulative distributions of fluence, peak flux and duration can be well fitted by a bent power law, while the cumulative distribution of waiting time follows a simple power law. In particular, the probability density functions of fluctuations of fluence, peak flux, and duration have a sharp peak and fat tails, which can be well fitted by a q-Gaussian function. The q values keep approximately steady for different scale intervals, indicating a scale-invariant structure of soft gamma repeaters. Those results support that the origin of soft gamma repeaters is crustquakes of neutron stars with extremely strong magnetic fields.

    HTML

Reference (36)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return