Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics

  • The Chiral Magnetic Effect (CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics (AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGeV AuAu collisions.
      PCAS:
  • 加载中
  • [1] A. Vilenkin, Phys. Rev. D, 22:3080 (1980)
    [2] D. Kharzeev, Phys. Lett. B, 633:260 (2006)
    [3] D. Kharzeev and A. Zhitnitsky, Nucl. Phys. A, 797:67 (2007)
    [4] D. E. Kharzeev, L. D. McLerran, and H. J. Warringa, Nucl. Phys. A, 803:227 (2008)
    [5] K. Fukushima, D. E. Kharzeev, and H. J. Warringa, Phys. Rev. D, 78:074033 (2008)
    [6] D. T. Son and P. Surowka, Phys. Rev. Lett., 103:191601 (2009)
    [7] V. I. Zakharov, Lect. Notes Phys., 871:295 (2013)
    [8] K. Fukushima, Lect. Notes Phys., 871:241 (2013)
    [9] D. E. Kharzeev and H. U. Yee, Phys. Rev. D, 84:045025 (2011)
    [10] H. B. Nielsen and M. Ninomiya, Phys. Lett., 130B:389 (1983)
    [11] D. T. Son and B. Z. Spivak, Phys. Rev. B, 88:104412 (2013)
    [12] Q. Li et al, Nature Phys., 12:550 (2016)
    [13] J. Xiong et al, arXiv:1503.08179[cond-mat.str-el]
    [14] X. Huang et al, Physical Review X, 5:031023 (2015)
    [15] F. Arnold, C. Shekhar, S.-C. Wu et al, Nature Communications, 7:11615 (2016)
    [16] B. I. Abelev et al (STAR Collaboration), Phys. Rev. Lett., 103:251601 (2009)
    [17] B. I. Abelev et al (STAR Collaboration), Phys. Rev. C, 81:054908 (2010)
    [18] L. Adamczyk et al (STAR Collaboration), Phys. Rev. C, 88:064911 (2013)
    [19] L. Adamczyk et al (STAR Collaboration), Phys. Rev. C, 89:44908 (2014)
    [20] L. Adamczyk et al (STAR Collaboration), Phys. Rev. Lett., 113:052302 (2014)
    [21] B. I. Abelev et al (ALICE Collaboration), Phys. Rev. Lett., 110:012301 (2013)
    [22] D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, Prog. Part. Nucl. Phys., 88:1 (2016)
    [23] J. Liao, Pramana 84 (5):901 (2015)
    [24] Gang Wang (STAR Collaboration), Nucl. Phys A, 904:248c (2013)
    [25] A. Bzdak, V. Koch, and J. Liao, Lect. Notes Phys., 871:503 (2013)[arXiv:1207.7327[nucl-th]].
    [26] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and U. Heinz, Comput. Phys. Commun., 199:61 (2016)
    [27] S. Borsanyi, Z. Fodor, S. D. Katz, S. Krieg, C. Ratti, and K. Szabo, JHEP, 1201:138 (2012)
    [28] A. Bazavov et al, Phys. Rev. D, 86:034509 (2012)
    [29] S. Lin and H. U. Yee, Phys. Rev. D, 88 (2):025030 (2013)
    [30] C. Manuel and J. M. Torres-Rincon, Phys. Rev. D, 92 (7):074018 (2015)
    [31] Y. Yin and J. Liao, Phys. Lett. B, 756:42 (2016)
    [32] H. U. Yee and Y. Yin, Phys. Rev. C, 89 (4):044909 (2014)
    [33] J. Bloczynski, X. G. Huang, X. Zhang, and J. Liao, Phys. Lett. B, 718:1529 (2013)
    [34] L. McLerran and V. Skokov, Nucl. Phys. A, 929:184 (2014)
    [35] U. Gursoy, D. Kharzeev, and K. Rajagopal, Phys. Rev. C, 89 (5):054905 (2014)
    [36] K. Tuchin, Phys. Rev. C, 93 (1):014905 (2016)
    [37] D. Kharzeev, A. Krasnitz, and R. Venugopalan, Phys. Lett. B, 545:298 (2002)
    [38] B. Muller and A. Schafer, Phys. Rev. C, 82:057902 (2010)
    [39] Y. Hirono, T. Hirano, and D. E. Kharzeev, arXiv:1412.0311[hep-ph]
    [40] M. Mace, S. Schlichting and R. Venugopalan, Phys. Rev. D, 93 (7):074036 (2016)
    [41] A. H. Rezaeian, M. Siddikov, M. Van de Klundert, and R. Venugopalan, Phys. Rev. D, 87 (3):034002 (2013)
    [42] B. Schenke, P. Tribedy, and R. Venugopalan, Phys. Rev. Lett., 108:252301 (2012)
    [43] H. Kowalski, T. Lappi, and R. Venugopalan, Phys. Rev. Lett., 100:022303 (2008)
    [44] M. Hongo, Y. Hirono, and T. Hirano, arXiv:1309.2823[nucl-th]
    [45] G. S. Denicol, H. Niemi, I. Bouras, E. Molnar, Z. Xu, D. H. Rischke, and C. Greiner, Phys. Rev. D, 89 (7):074005 (2014)
    [46] S. A. Voloshin, Phys. Rev. C, 70:057901 (2004)
    [47] J. Bloczynski, X. G. Huang, X. Zhang, and J. Liao, Nucl. Phys. A, 939:85 (2015)
    [48] V. Skokov, P. Sorensen, V. Koch, S. Schlichting, J. Thomas, S. Voloshin, G. Wang, and H. U. Yee, arXiv:1608.00982[nucl-th]
    [49] W. T. Deng, X. G. Huang, G. L. Ma, and G. Wang, Phys. Rev. C, 94:041901 (2016)
    [50] F. Wang and J. Zhao, arXiv:1608.06610[nucl-th]
    [51] F. Wen, L. Wen, and G. Wang, arXiv:1608.03205[nucl-th]
    [52] G. L. Ma and B. Zhang, Phys. Lett. B, 700:39 (2011)
    [53] N. Mller, S. Schlichting, and S. Sharma, Phys. Rev. Lett., 117 (14):142301 (2016)
    [54] Y. Burnier, D. E. Kharzeev, J. Liao, and H. U. Yee, Phys. Rev. Lett., 107:052303 (2011); arXiv:1208.2537[hep-ph]
    [55] L. Adamczyk et al[STAR Collaboration], Phys. Rev. Lett., 114 (25):252302 (2015)
  • 加载中

Get Citation
Yin Jiang, Shuzhe Shi, Yi Yin and Jinfeng Liao. Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics[J]. Chinese Physics C, 2018, 42(1): 011001. doi: 10.1088/1674-1137/42/1/011001
Yin Jiang, Shuzhe Shi, Yi Yin and Jinfeng Liao. Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics[J]. Chinese Physics C, 2018, 42(1): 011001.  doi: 10.1088/1674-1137/42/1/011001 shu
Milestone
Received: 2017-11-15
Fund

    This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The work is also supported in part by the National Science Foundation under Grant No. PHY-1352368 (SS and JL), by the National Science Foundation of China under Grant No. 11735007 (JL) and by the U.S. Department of Energy under grant Contract Number No. DE-SC0012704 (BNL)/DE-SC0011090 (MIT) (YY). JL is grateful to the Institute for Nuclear Theory for hospitality during the INT-16-3 Program. The computation of this research was performed on IU's Big Red Ⅱ cluster, supported in part by Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute) and in part by the Indiana METACyt Initiative.

Article Metric

Article Views(2426)
PDF Downloads(85)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics

    Corresponding author: Jinfeng Liao,
  • 1.  School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
  • 2.  Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA
  • 3.  Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
  • 4. Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408, USA
  • 5. Institute of Particle Physics and Key Laboratory of Quark &
Fund Project:  This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The work is also supported in part by the National Science Foundation under Grant No. PHY-1352368 (SS and JL), by the National Science Foundation of China under Grant No. 11735007 (JL) and by the U.S. Department of Energy under grant Contract Number No. DE-SC0012704 (BNL)/DE-SC0011090 (MIT) (YY). JL is grateful to the Institute for Nuclear Theory for hospitality during the INT-16-3 Program. The computation of this research was performed on IU's Big Red Ⅱ cluster, supported in part by Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute) and in part by the Indiana METACyt Initiative.

Abstract: The Chiral Magnetic Effect (CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics (AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGeV AuAu collisions.

    HTML

Reference (55)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return