×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Investigation of natural contamination layer growth on optical substrates

  • The surface contamination layer on mirrors can cause significant degradation of the optical performance, which is widely observed in applications, particularly in the fabrication of X-ray focusing telescopes. In this paper, we study the natural contamination layer arising from adsorption precipitation of hydrocarbons or other organic and water molecules in the absence of any external factor. Temporal evolution of the layer formed on super-smooth fused silica, borosilicate glass, and silicon substrates is studied by X-ray reflectometry, atomic force microscopy, and transmission electron microscopy for a one-year period after surface cleaning. The general characteristics of adhesion layer growth are established and discussed. The reconstructed dielectric constant profiles demonstrate that an increase in the adhesion layer thickness, deposited mass and density over time obeys power laws with extremely small exponents. Therefore, the adhesion layer growth is rapid immediately after surface cleaning, with a~1 nm thick layer formed within the first day on all three substrates studied, while the layer density is low (~1 g/cm3). The layer growth on the fused silica and silicon substrates became very slow in the succeeding days, with only a 1.4-1.5 nm thick layer and 1.2-1.3 g/cm3 density after one year of storage in air. At the same time, the adhesion layer growth on the glass substrate showed unexpected acceleration about two months after cleaning, so that the layer thickness reached~2.2 nm after one year of storage. The reason for this effect, which is connected with leaching of the glass, is discussed briefly.
      PCAS:
  • 加载中
  • [1] C. J. Hailey, H. J. An, K. L. Blaedel et al, Proc. SPIE, 7732-28(2010)
    [2] Y. Soong, T. Okajima, P. J. Serlemitsos et al, Proc. SPIE, 9144:914428(2014)
    [3] M. Bavdaz, E. Wille, M. Ayre et al, Proc. SPIE, 10399:103990B (2017)
    [4] S.N. Zhang, M. Feroci, A. Santangelo et al, Proc. SPIE, 9905:99051Q-1(2016)
    [5] W.M. Yuan, C. Zhang, Y. Chen et al, Sci Sin-Phys Mech Astron, 48:039502(2018)
    [6] S. L. O'Dell, R. Allured, A. O. Ames et al., Proc. SPIE, 9965:996507(2016)
    [7] K.W. Chan, W. W. Zhang, M. J. Schofield et al, Proc. SPIE, 9905:99056X (2016)
    [8] H. J. An, F. E. Christensen, M. Doll et al, Proc. SPIE, 7437:74371J-1(2009)
    [9] M.Tolan, In Springer Tracts in Modern Physics, Vol. 148, (Berlin:Springer, 1999)
    [10] K. Boller, R.-P. Haelbich, H. Hogrefe et al, Nucl. Instrum. Methods A, 208:273-279(1983)
    [11] Q. S. Huang, H. C. Li, Z. Q. Song et al, Chin. Phys. C, 37(2):028002(2013)
    [12] I. V. Kozhevnikov, A. V. Buzmakov, F. Siewert et al, J. Synchr. Rad., 23:78-90(2009)
    [13] J. Chen, E. Louis, C. J. Lee et al, Opt. Express, 17:16969-16979(2009)
    [14] Q. S. Huang, V. Medvedev, R. van de Kruijs et al, Appl. Phys. Rev., 4:011104(2017)
    [15] R. Bouwman, J. B. van Mechelen, A. A. Holscher, In Surface Contamination. Genesis, Detection, and Control, Vol. 1, (Plenum Press, NY), 87-296(1978)
    [16] H. B. Bonham, P. V. Plunkett, In Surface Contamination. Genesis, Detection, and Control, Vol. 1, (Plenum Press, NY), 271-285(1978)
    [17] I. V. Kozhevnikov, E. O. Filatova, A. A. Sokolov et al, J. Synchrotron Rad., 22:348-353(2015)
    [18] Y. O. Volkov, I. V. Kozhevnikov, B. S. Roshchin et al, Crystallogr. Rep., 58:160-167(2013)
    [19] E. O. Filatova, I. V. Kozhevnikov, A. A. Sokolov et al, Sci. Technol. Adv. Mater., 13:015001-12(2012)
    [20] K. L. Mittal, ed, In Surface Contamination. Genesis, Detection, and Control, Vol. 1., (Plenum Press, NY, 1978)
    [21] S. Ma, M. W. Wen, Z. S. Wang, Chin. Phys. C, 40(7):079001(2016)
    [22] F. F. Wang, J. T. Zhu, Q. Zhong et al, Chin. Phys. C, 36(9):909-914(2012)
    [23] E. O. Filatova, A. A. Sokolov, I. V. Kozhevnikov, Chapter 7 in the book High-k Gate Dielectrics for SMOS Technology. Gang He, Ed. Wiley-VCH Verlag, (Weinhem, Germany), 225-271(2012)
    [24] P. B. Adams, In Surface Contamination. Genesis, Detection, and Control, Vol. 1., (Plenum Press, NY), 327-338(1978)
    [25] R. Conradt, J. Am. Ceram. Soc., 91:728-735(2008)
    [26] L. L. Hench, E. C. Ethridge, In Surface Contamination. Genesis, Detection, and Control, Vol. 1, (Plenum Press, NY), 313-326(1978)
    [27] I.V. Kozhevnikov, Nucl. Instrum. Methods A, 508:519-541(2003)
    [28] I.V. Kozhevnikov, L. Peverini, and E. Ziegler, Phys. Rev. B, 85:125439(2012)
    [29] I. V. Kozhevnikov, Crystallogr. Rep., 57:490-498(2012)
    [30] M. W. Wen, I.V. Kozhevnikov, Z. S. Wang, Opt. Express, 23:24220-24235(2015)
    [31] I. V. Kozhevnikov, L. Peverini, E. Ziegler, Opt. Express, 14:144-149(2008)
    [32] I. V. Kozhevnikov, L. Peverini, E. Ziegler, J. Appl. Phys., 104:054914(2008)
    [33] D. Attwood, In Soft X-Rays and Extreme Ultraviolet Radiation:Principles and Applications, Cambridge University Press, Cambridge, UK, 1999
  • 加载中

Get Citation
Li Jiang, Qiu-Shi Huang, Igor V. Kozhevnikov, Yi-Yun Yao, Jiang-Tao Feng, Yu-Fei Feng, Bin Ma, Hong-Fei Jiao, Hong Chen, Zhong Zhang and Zhan-Shan Wang. Investigation of natural contamination layer growth on optical substrates[J]. Chinese Physics C, 2018, 42(11): 115001. doi: 10.1088/1674-1137/42/11/115001
Li Jiang, Qiu-Shi Huang, Igor V. Kozhevnikov, Yi-Yun Yao, Jiang-Tao Feng, Yu-Fei Feng, Bin Ma, Hong-Fei Jiao, Hong Chen, Zhong Zhang and Zhan-Shan Wang. Investigation of natural contamination layer growth on optical substrates[J]. Chinese Physics C, 2018, 42(11): 115001.  doi: 10.1088/1674-1137/42/11/115001 shu
Milestone
Received: 2018-06-18
Fund

    Supported by the National Key RD Program of China (2016YFA0401304), the National Natural Science Foundation of China (NSFC) (61621001, U1731242, U1732268) and the Ministry of Science and Higher Education of Russian Federation within the State assignment FSRC Crystallography and Photonics RAS

Article Metric

Article Views(1663)
PDF Downloads(16)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Investigation of natural contamination layer growth on optical substrates

  • 1.  Key Laboratory of Advanced Micro-Structured Materials MOE, Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
  • 2.  Shubnikov Institute of Crystallography of Federal Scientific Research Centre &ldquo
Fund Project:  Supported by the National Key RD Program of China (2016YFA0401304), the National Natural Science Foundation of China (NSFC) (61621001, U1731242, U1732268) and the Ministry of Science and Higher Education of Russian Federation within the State assignment FSRC Crystallography and Photonics RAS

Abstract: The surface contamination layer on mirrors can cause significant degradation of the optical performance, which is widely observed in applications, particularly in the fabrication of X-ray focusing telescopes. In this paper, we study the natural contamination layer arising from adsorption precipitation of hydrocarbons or other organic and water molecules in the absence of any external factor. Temporal evolution of the layer formed on super-smooth fused silica, borosilicate glass, and silicon substrates is studied by X-ray reflectometry, atomic force microscopy, and transmission electron microscopy for a one-year period after surface cleaning. The general characteristics of adhesion layer growth are established and discussed. The reconstructed dielectric constant profiles demonstrate that an increase in the adhesion layer thickness, deposited mass and density over time obeys power laws with extremely small exponents. Therefore, the adhesion layer growth is rapid immediately after surface cleaning, with a~1 nm thick layer formed within the first day on all three substrates studied, while the layer density is low (~1 g/cm3). The layer growth on the fused silica and silicon substrates became very slow in the succeeding days, with only a 1.4-1.5 nm thick layer and 1.2-1.3 g/cm3 density after one year of storage in air. At the same time, the adhesion layer growth on the glass substrate showed unexpected acceleration about two months after cleaning, so that the layer thickness reached~2.2 nm after one year of storage. The reason for this effect, which is connected with leaching of the glass, is discussed briefly.

    HTML

Reference (33)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return