Stable gravastars: Guilfoyle's electrically charged solutions

  • Compelling alternatives to black holes, namely, gravitational vacuum stars (gravastars), which are multilayered compact objects, have been proposed to avoid a number of theoretical problems associated with event horizons and singularities. In this work, we construct a spherically symmetric thin-shell charged gravastar model where the vacuum phase transition between the de Sitter interior and the external Reissner-Nordström spacetime (RN) are matched at a junction surface, by using the cut-and-paste procedure. Gravastar solutions are found among the Guilfoyle exact solutions where the gravitational potential W2 and the electric potential field φ obey a particular relation in a simple form a(b-εφ)2 +b1, where a, b and b1 are arbitrary constants. The simplest ansatz of Guilfoyle's solution is implemented by the following assumption:that the total energy density 8πρm+(Q2/r4) is constant, where Q(r) is the electric charge up to a certain radius r. We show that, for certain ranges of the parameters, we can avoid the horizon formation, which allows us to study the linearized spherically symmetric radial perturbations around static equilibrium solutions. To lend our solution theoretical support, we also analyze the physical and geometrical properties of gravastar configurations.
      PCAS:
  • 加载中
  • [1] S. Chandrasekhar, Mon. Not. R Astron. Soc., 91:5(1931)
    [2] W. Baade and F. Zwicky, Phys. Rev., 46:1(1934)
    [3] L.D. Landau, Phys. Z. Sowjetunion, 1:285-288(1932)
    [4] J.R. Oppenheimer and H. Snyder, Phys. Rev., 56:455(1939)
    [5] R. Penrose, Phys. Rev. Lett., 14:57(1965)
    [6] P.O. Mazur and E. Mottola, Gravitational Condensate Stars:An Alternative to Black Holes, 2001 Preprint arXiv:gr-qc/0109035
    [7] P.O. Mazur and E. Mottola, Dark energy and condensate stars:Casimir energy in the large, Proceedings of the Sixth Workshop on Quantum Field Theory Under the Influence of External Conditions, 2004 Preprint arXiv:gr-qc/0405111
    [8] P.O. Mazur and E. Mottola, Proc. Nat. Acad. Sci., 111:9545(2004)
    [9] M. Visser and D. L. Wiltshire, Class. Quant. Grav., 21:1135-1152(2004)
    [10] W. Israel, Nuovo Cim. B, 44:S10(1966) 1; Erratum-ibid B, 48:463(1967)
    [11] N. Bilić, G.B. Tupper and R.D. Viollier, J. Cosmol. Astropart. Phys., 0602:013(2006)
    [12] F. S. N. Lobo and A. V. B. Arellano, Class. Quant. Grav., 24:1069-1088(2007),
    [13] A. DeBenedictis, D. Horvat, S. Ilijić, S. Kloster, and K.S. Viswanathan, Class. Quantum Grav., 23:2303(2006)
    [14] D. Horvat, S. Ilijić and A. Marunovic, Class. Quant. Grav., 26:025003(2009)
    [15] A.A. Usmani et al, Phys. Lett. B, 701:388-392(2011)
    [16] R. Chan et al, JCAP, 1110:013(2011)
    [17] F. S. N. Lobo, Class. Quant. Grav., 23:1525(2006)
    [18] A. Das et al, Phys. Rev. D, 95:124011(2017)
    [19] A. Banerjee and S. Hansraj, Eur. Phys. J. C, 76:641(2016)
    [20] A. Banerjee et al, Eur. Phys. J. C, 76:34(2016)
    [21] F.S.N. Lobo and R. Garattini, J. High Energ. Phys., 1312:065(2013)
    [22] Ali Ovgun, Ayan Banerjee, and Kimet Jusufi, Eur. Phys. J. C, 77:566(2017)
    [23] H. Reissner, Annalen der Phys., 50:106(1916)
    [24] H. Weyl, Annalen der Phys., 54:117(1917)
    [25] H. Weyl, Annalen der Phys., 59:185(1919)
    [26] S. D. Majumdar, Phys. Rev., 72 390-398(1947)
    [27] B. S. Guilfoyle, Gen. Rel. Grav., 31:1645-1673(1999)
    [28] J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D, 80:024010(2009)
    [29] J. P. S. Lemos and V. T. Zanchin, Phys. Rev. D, 81:124016(2010)
    [30] J. P. S. Lemos and V.T. Zanchin, Phys. Rev. D, 93:124012(2016)
    [31] J. P. S. Lemos and V. T. Zanchin, Class. Quant. Grav., 32:135009(2015)
    [32] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev., 55 374(1939)
    [33] R.C. Tolman, Phys. Rev., 55:364(1939)
    [34] P. Musgrave and K. Lake, Class. Quantum Grav., 13:1885(1996)
    [35] E. Poisson and M. Visser, Phys. Rev. D, 52:7318(1995)
    [36] F. S. N. Lobo, Class. Quant. Grav., 23:1525-1541(2006)
    [37] H. A. Buchdahl, Phys. Rev., 116:1027(1959)
    [38] B. V. Ivanov, Phys. Rev. D, 65:104011(2002)
    [39] P. Martin-Moruno et al, J. Cosmol. Astropart. Phys., 03:034(2012)
    [40] H. Andreasson, Commun. Math. Phys., 288:715(2009)
    [41] C. G. Boehmer and T. Harko, Gen. Rel. Grav., 39:757(2007)
  • 加载中

Get Citation
Ayan Banerjee, J. R. Villanueva, Phongpichit Channuie and Kimet Jusufi. Stable gravastars: Guilfoyle's electrically charged solutions[J]. Chinese Physics C, 2018, 42(11): 115101. doi: 10.1088/1674-1137/42/11/115101
Ayan Banerjee, J. R. Villanueva, Phongpichit Channuie and Kimet Jusufi. Stable gravastars: Guilfoyle's electrically charged solutions[J]. Chinese Physics C, 2018, 42(11): 115101.  doi: 10.1088/1674-1137/42/11/115101 shu
Milestone
Received: 2018-05-07
Revised: 2018-08-05
Article Metric

Article Views(824)
PDF Downloads(13)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Stable gravastars: Guilfoyle's electrically charged solutions

  • 1.  Department of Mathematics, Jadavpur University, Kolkata-700032, India
  • 2.  Instituto de Fí
  • 3.  School of Science, Walailak University, Nakhon Si Thammarat, 80160 Thailand
  • 4.  Physics Department, State University of Tetovo, Ilinden Street nn, 1200, Macedonia

Abstract: Compelling alternatives to black holes, namely, gravitational vacuum stars (gravastars), which are multilayered compact objects, have been proposed to avoid a number of theoretical problems associated with event horizons and singularities. In this work, we construct a spherically symmetric thin-shell charged gravastar model where the vacuum phase transition between the de Sitter interior and the external Reissner-Nordström spacetime (RN) are matched at a junction surface, by using the cut-and-paste procedure. Gravastar solutions are found among the Guilfoyle exact solutions where the gravitational potential W2 and the electric potential field φ obey a particular relation in a simple form a(b-εφ)2 +b1, where a, b and b1 are arbitrary constants. The simplest ansatz of Guilfoyle's solution is implemented by the following assumption:that the total energy density 8πρm+(Q2/r4) is constant, where Q(r) is the electric charge up to a certain radius r. We show that, for certain ranges of the parameters, we can avoid the horizon formation, which allows us to study the linearized spherically symmetric radial perturbations around static equilibrium solutions. To lend our solution theoretical support, we also analyze the physical and geometrical properties of gravastar configurations.

    HTML

Reference (41)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return