×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

  • Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N=Z nuclei, and must then be taken into account.
      PCAS:
  • 加载中
  • [1] B. Blank and M. J. G. Borge, Progr. Part. Nucl. Phys., 60:403-483 (2008)
    [2] M. Pfutzner, M. Karny, L. V. Grigorenko et al, Rev. Mod. Phys., 84:567-619 (2012)
    [3] H. Sagawa and K. Hagino, Eur. Phys. J. A, 51:102 (2015)
    [4] T. Nakamura, H. Sakurai, and H. Watanabe, Progr. Part. Nucl. Phys., 97:53-122 (2017)
    [5] A. L. Goodman, Adv. Nucl. Phys., 11:263-366 (1979)
    [6] J. Engel, S. Pittel, M. Stoitsov et al, Phys. Rev. C, 55:1781-1788 (1997)
    [7] O. Civitarese and M. Reboiro, Phys. Rev. C, 56:1179-1182 (1997)
    [8] A. A. Raduta, L. Pacearescu, P. Sarriguren et al, Nucl. Phys. A, 675:503-530 (2000)
    [9] F. Simkovic, Ch. C. Moustakidis, L. Pacearescu et al, Phys. Rev. C, 68:054319 (2003)
    [10] N. Sandulescu, D. Negrea, J. Dukelsky et al, Phys. Rev. C, 85:061303 (R) (2012)
    [11] H. Sagawa, Y. Tanimura, and K. Hagino, Phys. Rev. C, 87:034310 (2013)
    [12] N. Hinohara and J. Engel, Phys. Rev. C, 90:031301 (R) (2014)
    [13] M. Sambataro and N. Sandulescu, Phys. Rev. C, 93:054320 (2016)
    [14] Wenjin Tan, Dongdong Ni, and Zhongzhou Ren, Chin. Phys. C, 41:54103 (2017)
    [15] P. Van Isacker, J. Engel, and K. Nomura, arXiv:1708.05925.
    [16] S. Frauendorf and A. O. Machiavelli, Prog. Part. Nucl. Phys., 78:24-90 (2014)
    [17] C. Qi and R. Wyss, Phys. Scr., 91:013009 (2016)
    [18] J. Bardeen, L. N. Cooper and J. R. Schriefier, Phys. Rev., 106:162-164 (1957)
    [19] A. Goswami, Nucl. Phys., 60:228-240 (1964)
    [20] A. Goswami and L. S. Kisslinger, Phys. Rev., 140:B26-B31 (1965)
    [21] H. T. Chen and A. Goswami, Nucl. Phys., 88:208-214 (1966)
    [22] H. Chen and A. Goswami, Phys. Lett. B, 24:257-259 (1967)
    [23] G. G. Dussel, E. Maqueda and R. P. J. Perazzo, Nucl. Phys. A, 153:469-480 (1970)
    [24] H. H. Wolter, A. Faessler and P. U. Sauer, Nucl. Phys. A, 167:108-128 (1971)
    [25] A. L. Goodman, Nucl. Phys. A, 186:475-492 (1972)
    [26] O. Civitarese, M. Reboiro and P. Vogel, Phys. Rev. C, 56:1840-1843 (1997)
    [27] D. Mokhtari, N. H. Allal and M. Fellah, Acta Phys. Hung. A:Heavy Ion Phys., 19:187-190 (2004)
    [28] D. Mokhtari, M. Fellah and N. H. Allal, Int. J. Mod. Phys. E, 25:1650035 (2016)
    [29] P. Ring and P. Schuck, The Nuclear Many Body Problem, (Berlin, Springer, 1980)
    [30] J. Dukelsky, S. Pittel and C. Esebbag, Phys. Rev. C, 93:034313 (2016)
    [31] N. H. Allal and M. Fellah, Phys. Rev. C, 43:2648-2657 (1991)
    [32] N. H. Allal, M. Fellah, N. Benhamouda et al, Phys. Rev. C, 77:054310 (2008)
    [33] Faiza Hammache, N. H. Allal, M. Fellah et al, Int. J. Mod. Phys. E, 25:1650032 (2016)
    [34] N. Benhamouda, N. H. Allal, M. Fellah et al, Int. J. Mod. Phys. E, 17:1357-1365 (2008)
    [35] S. Kerrouchi, D. Mokhtari, N. H. Allal et al, Int. J. Mod. Phys. E, 18:141-160 (2009)
    [36] M. Douici, N. H. Allal, M. Fellah, et al, Int. J. Mod. Phys. E, 21:1250046 (2012)
    [37] N. H. Allal, M. Fellah, M. Douici et al, Int. J. Mod. Phys. E, 25:1650108 (2016)
    [38] M. Douici, N.H. Allal, M. Fellah, et al, Int. J. Mod. Phys. E, 22:1350029 (2013)
    [39] M. Borrajo and J. L. Egido, Phys. Lett. B, 764:328-334 (2017)
    [40] D. C. Zheng, D. W. L. Sprung and H. Flocard, Phys. Rev. C, 46:1355-1363 (1992)
    [41] J. A. Sheikh, P. Ring, E. Lopes et al, Phys. Rev. C 66:044318 (2002)
    [42] G. Hupin and Denis Lacroix, Phys. Rev. C, 86:024309 (2012)
    [43] S. Kerrouchi, N. H. Allal, M. Fellah et al, Int. J. Mod. Phys. E, 19:1383-1409 (2010)
    [44] S. Kerrouchi, N. H. Allal, M. Fellah et al, Int. J. Mod. Phys. E, 24:1550014 (2015)
    [45] H. J. Lipkin, Ann. Phys. (NY), 12:452-462 (1960)
    [46] Y. Nogami, Phys. Rev., 134, B313-B321 (1964)
    [47] W. Satula and R. Wyss, Phys. Lett. B, 393:1-6 (1997)
    [48] W. Satula and R. Wyss, Nucl. Phys. A, 676:120-142 (2000)
    [49] K. Sieja and A. Baran, Acta Phys. Pol. B, 35:107-114 (2006)
    [50] V. N. Fomenko, J. Phys A, 3:8-20 (1970)
    [51] M. Fellah, T. F. Hammann, and D. E. Medjadi, Phys. Rev. C, 8:1585-1592 (1973)
    [52] M. Fellah and T. F. Hammann, Phys. Rev. C, 20:1560-1571 (1979)
    [53] N. H. Allal, M. Fellah, M. R. Oudih et al, Eur. Phys. J. A, 27, s01:301-306 (2006)
    [54] N. Sandulescu, B. Erren and J. Dukelsky, Phys. Rev. C, 80:044335 (2009)
    [55] M. Fellah, N. H. Allal, Faiza Hammache et al, Int. J. Mod. Phys. E, 24:1550097 (2015)
    [56] K. Allaart and E. Boeker, Nucl. Phys. A, 168:630-662 (1971)
    [57] M. R. Oudih, M. Fellah and N. H. Allal, Int. J. Mod. Phys. E, 12:109-123 (2003)
    [58] M. V. Stoitsov, J. Dobaczewski, R. Kirchner, et al, Phys. Rev. C, 76:014308 (2007)
    [59] H. Olofsson, R. Bengtsson and P. Moller, Nucl. Phys. A, 784:104-146 (2007)
    [60] M. R. Oudih, M. Fellah, N. H. Allal et al, Phys. Rev. C, 76:047307 (2007)
    [61] A. A. Raduta, M. I. Krivoruchenko and A. Faessler, Phys. Rev. C, 85:054314 (2012)
    [62] A. A. Raduta and E. Moya de Guerra, Ann. Phys. (NY), 284:134-166 (2000)
    [63] K. Sieja, T. L. Ha, P. Quentin et al., Int. J. Mod. Phys. E, 16:289-298 (2007)
    [64] L. Bonneau, P. Quentin, and K. Sieja, Phys. Rev. C, 76:014304 (2007)
    [65] H. Laftchiev, J. Libert, P. Quentin et al, Nucl. Phys. A, 845:33-57 (2010)
    [66] K. W. Schmid, F. Grummer and A. Faessler, Ann. Rev. (NY), 180:1-73 (1987)
    [67] A. Petrovici, K. W. Schmid and Amand Faessler, Nucl. Phys. A, 647:197-216 (1999)
    [68] A. Petrovici, K. W. Schmid and Amand Faessler, Nucl. Phys. A, 728:396-414 (2003)
    [69] R. R. Chassman, Phys. Rev. Lett., 95:262501 (2005)
    [70] R. R. Chassman and P. Van Isacker, Phys. Lett. B, 685:55-58 (2010)
    [71] A. Mukherjee, Y. Alhassid, and G. F. Bertsch, Phys. Rev. C, 83:014319 (2011)
    [72] L.Y. Jia, Phys. Rev. C, 88:044303 (2013)
    [73] L. Y. Jia, Nucl. Phys. A, 941:293-306 (2015)
    [74] J. Q. Chen, Nucl. Phys. A, 626:686-714 (2000)
    [75] Y. M. Zhao, N. Yoshinaga, S. Yamaji et al, Phys. Rev. C, 62:014304 (2000)
    [76] G. J. Fu, Y. Lei, Y. M. Zhao et al, Phys. Rev. C, 87:044310 (2013)
    [77] S. Shlomo and I. Talmi, Nucl. Phys. A, 198:81-108 (1972)
    [78] L. Y. Jia, J. Phys. G:Nucl. Part. Phys., 42:115105 (2015)
    [79] M.-J. Cheng, L. Liu, and Y.-X. Zhang, Chin. Phys. C, 39:104102 (2015)
    [80] N. K. Timofeyuk, Phys. Rev. C, 81:064306 (2010)
    [81] O. Jensen, G. Hagen, T. Papenbrock et al, Phys. Rev. C, 82:014310 (2010)
    [82] F. Flavigny, Dtermination de facteurs spectroscopiques absolus par ractions de knockout et de transfert, Ph. D. Thesis (Universit Paris-Sud 6, 2011) (in French)
    [83] P. C. Srivastava and V. Kumar, Phys. Rev. C, 94:064306 (2016)
    [84] M. B. Tsang, Jenny Lee, and W. G. Lynch, Phys. Rev. Lett., 95:222501 (2005)
    [85] F. Beck, D. Frekers, P. von Neumann-Cosel et al, Phys. Lett. B, 645:128-132 (2007)
    [86] Jenny Lee, M. B. Tsang and W. G. Lynch, Phys. Rev. C, 75:064320 (2007)
    [87] M. B. Tsang, Jenny Lee, S. C. Su et al, Phys. Rev. Lett., 102:062501 (2009)
    [88] Sh. Hamada, N. Burtebayev, and N. Amangeldi, Int. J. Mod. Phys. E, 23:1450061 (2014)
    [89] N. Burtebayev, J. T. Burtebayeva, A. Duisebayev et al, Acta Phys. Pol. B, 46:1037-1054 (2015)
    [90] Vishal Srivastava, C. Bhattacharya, T. K. Rana et al, Phys. Rev. C, 93:044601 (2016)
    [91] F. Wang, B. H. Sun, Z. Liu et al, Phys. Lett. B, 770:83-87 (2017)
    [92] M. Horoi, J. Phys.:Conf. Ser., 413:012020 (2013)
    [93] P. O. Hess, A. Algora, J. Cseh et al, Phys. Rev. C, 70:051303 (R) (2004)
    [94] N. K. Timofeyuk, Phys. Rev. C, 88:044315 (2013)
    [95] H. T. Fortune and R. Sherr, Phys. Rev. C, 85:027305 (2012)
    [96] N. V. Gnezdilov, E. E. Saperstein, and S. V. Tolokonnikov, Phys. Atom. Nucl., 78:27-37 (2015)
    [97] E. Baranger and T. T. S. Kuo, Nucl. Phys. A, 97:289-297 (1967)
    [98] S. Aberg, P. B. Semmes and W. Nazarewicz, Phys. Rev. C, 56:1762-1773 (1997)
    [99] C. Basu, Pramana J. Phys., 63:1047-1052 (2004)
    [100] J. M. Yao, B. Sun, P. J. Woods et al, Phys. Rev. C, 77:024315 (2008)
    [101] H. F. Zhang, Y. J. Wang, J. M. Dong et al, J. Phys. G:Nucl. Part. Phys., 37:085107 (2010)
    [102] K. Kumar, J. B. Gupta, and J. H. Hamilton, Nucl. Phys. A, 448:36-44 (1986)
    [103] Y. Benbouzid, N. H. Allal, and M. Fellah, Rom. Journ. Phys., 61:424-434 (2016)
    [104] R. R. Chasman, Phys. Lett. B, 524:81-86 (2002)
    [105] R. W. Richardson, and N. Sherman, Nucl. Phys., 52:253-268 (1964)
    [106] R. D. Woods and D. S. Saxon, Phys. Rev., 95:577-578 (1954)
    [107] N. H. Allal and M. Fellah, Phys. Rev. C, 50:1404-1411 (1994)
    [108] S. Goriely, F. Tondeur, and J. M. Pearson, Atom. Data Nucl. Data Tables, 77:311-381 (2001)
    [109] P. Moller, J. R. Nix, W. D. Myers et al, Atom. Data Nucl. Data Tables, 59:185-381 (1995)
    [110] M. Wang, G. Audi, A. H. Wapstra et al, Chin. Phys. C, 36:1603 (2012)
  • 加载中

Get Citation
Y. Benbouzid, N. H. Allal, M. Fellah and M. R. Oudih. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei[J]. Chinese Physics C, 2018, 42(4): 044103. doi: 10.1088/1674-1137/42/4/044103
Y. Benbouzid, N. H. Allal, M. Fellah and M. R. Oudih. Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei[J]. Chinese Physics C, 2018, 42(4): 044103.  doi: 10.1088/1674-1137/42/4/044103 shu
Milestone
Received: 2018-01-15
Article Metric

Article Views(1534)
PDF Downloads(30)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Influence of isovector pairing and particle-number projection effects on spectroscopic factors for one-pair like-particle transfer reactions in proton-rich even-even nuclei

Abstract: Isovector neutron-proton (np) pairing and particle-number fluctuation effects on the spectroscopic factors (SF) corresponding to one-pair like-particle transfer reactions in proton-rich even-even nuclei are studied. With this aim, expressions of the SF corresponding to two-neutron stripping and two-proton pick-up reactions, which take into account the isovector np pairing effect, are established within the generalized BCS approach, using a schematic definition proposed by Chasman. Expressions of the same SF which strictly conserve the particle number are also established within the Sharp-BCS (SBCS) discrete projection method. In both cases, it is shown that these expressions generalize those obtained when only the pairing between like particles is considered. First, the formalism is tested within the Richardson schematic model. Second, it is applied to study even-even proton-rich nuclei using the single-particle energies of a Woods-Saxon mean-field. In both cases, it is shown that the np pairing effect and the particle-number projection effect on the SF values are important, particularly in N=Z nuclei, and must then be taken into account.

    HTML

Reference (110)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return