Global analysis of Skyrme forces with higher-order density dependencies

  • The density-dependent term in Skyrme forces is essential to simulate three-body and many-body correlations beyond the low-momentum two-body interaction. We speculate that a single density term may be insufficient and a higher-order density dependent term is added. The present work investigates the influence of higher-order density dependencies based on extended UNEDF0 and SkM* forces. Global descriptions of nuclear masses and charge radii are presented. The extended UNEDF0 force gives a global rms error on binding energies of 1.29 MeV. The influence on fission barriers and equation of state are also investigated. Perspectives to improve Skyrme forces are discussed, including global center-of-mass corrections and Lipkin-Nogami pairing corrections.
      PCAS:
  • 加载中
  • [1] T. H. R. Skyrme, Phil. Mag., 1: 1043 (1956)
    [2] J. W. Negele, Rev. Mod. Phys., 54: 913 (1982)
    [3] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys., 75: 121 (2003)
    [4] K. Huang and C. N. Yang, Phys. Rev., 105: 767 (1957); T. D. Lee and C. N. Yang, Phys. Rev., 105: 1119 (1957); P. Martin and C. De Dominicis, Phys. Rev., 105: 1417 (1957)
    [5] R. J. Furnstahl, Lecture Notes in Physics, Vol.852, 133 (Springer-Verlag, 2012)
    [6] X. Y. Xiong, J. C. Pei, and W. J. Chen, Phys. Rev. C, 93:024311 (2016)
    [7] E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A, 635: 231 (1998)
    [8] M. Kortelainen, T. Lesinski, J. More, W. Nazarewicz, J. Sarich, N. Schunck, M. V. Stoitsov, and S. Wild, Phys. Rev. C, 82:024313 (2010)
    [9] M. Kortelainen, J. McDonnell, W. Nazarewicz, P.-G. Reinhard, J. Sarich, N. Schunck, M. V. Stoitsov, and S. M. Wild, Phys. Rev. C, 85: 024304 (2012)
    [10] M. Kortelainen, J. McDonnell, W. Nazarewicz, E. Olsen, P.-G. Reinhard, J. Sarich, N. Schunck, S. M. Wild, D. Davesne, J. Erler, and A. Pastore, Phys. Rev. C, 89: 054314 (2014)
    [11] S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, J. Phys. G, 42: 075102 (2015)
    [12] M. Baldo, L. M. Robledo, P. Schuck, and X. Vinas, Phys. Rev. C, 87: 064305(2013)
    [13] A. Bulgac, M. M. Forbes, S. Jin, R. N. Perez, and N. Schunck, arXiv:1708.08771
    [14] J. R. Stone, P. A. M. Guichon, P. G. Reinhard, and A. W. Thomas, Phys. Rev. Lett., 116: 092501 (2016)
    [15] S. Goriely, S. Hilaire, M. Girod, and S. Peru, Phys. Rev. Lett., 102: 242501 (2009)
    [16] S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C, 88:024308 (2013)
    [17] P. W. Zhao, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C, 82: 054319 (2010)
    [18] J.D. McDonnell, N. Schunck, D. Higdon, J. Sarich, S.M. Wild, and W. Nazarewicz, Phys. Rev. Lett., 114: 122501 (2015)
    [19] M. Grasso, D. Lacroix, and U. van Kolck, Phys. Scr., 91:063005 (2016)
    [20] J. Dobaczewski, J. Phys. G, 43: 04LT01 (2016)
    [21] T. Duguet, M. Bender, J. -P. Ebran, T. Lesinski, and V. Soma, Eur. Phys. J. A, 51: 162 (2015)
    [22] M. Stoitsov, M. Kortelainen, S. K. Bogner, T. Duguet, R. J. Furnstahl, B. Gebremariam, and N. Schunck, Phys. Rev. C, 82: 054307 (2010)
    [23] P. Ring and P. Schuck, The nuclear many-body problem, (Springer, Berlin), 1980
    [24] C. Yannouleas and U.Landman, Rep. Prog. Phys., 70: 2067 (2007)
    [25] K. Q. Lu, Z. X. Li, Z. P. Li, J. M. Yao, and J. Meng, Phys. Rev. C, 91: 027304 (2015)
    [26] P. Klupfel, J.Erler, P.-G.Reinhard, and J. A. Maruhn, Eur. Phys. J. A, 37: 343 (2008)
    [27] M. Waroquier, J. Sau, and K. Heyde, Phys. Rev. C, 19: 1640 (1983)
    [28] A. K. Dutta, J. -P.Arcoragi, J. M. Pearson, R. Behrman, and F. Tondeur, Nucl. Phys. A, 458: 77 (1986)
    [29] Michel Farine, J. M. Pearson, and F. Tondeur, Nucl. Phys. A, 615: 135 (1997)
    [30] T. Lesinski, K. Bennaceur, T. Duguet, and J. Meyer, Phys. Rev. C, 74: 044315 (2006)
    [31] B. Cochet, K. Bennaceur, P. Bonche, T. Duguet, and J. Meyer, Nucl. Phys. A, 731: 34 (2004)
    [32] B. K. Agrawal, Shashi K. Dhiman, and Raj Kumar, Phys. Rev. C, 73: 034319 (2006)
    [33] J. Bartel, P. Quentin, M. Brack, C. Guet, and H. B. Hakansson, Nucl. Phys. A, 386: 79 (1982)
    [34] A. Staszczak, A. Baran, and W. Nazarewicz, Phys. Rev. C, 87:024320 (2013)
    [35] P.-G. Reinhard, computer code SKYAX (unpublished)
    [36] J. Dobaczewski, W. Nazarewicz, and M. V. Stoitsov, Eur. Phys. J. A, 15: 21 (2002)
    [37] M. Bender, K. Rutz, P.-G. Reinhard, and J. A. Maruhn, Eur. Phys. J. A, 8: 59 (2000)
    [38] C.-J. Yang, M. Grasso, and D. Lacroix, Phys. Rev. C, 96:034318 (2017)
    [39] J. R. Stone, P.-G. Reinhard, Prog. Part. Nucl. Phys., 58: 587 (2007)
    [40] B. K. Agrawal, S. Shlomo, and V. Kim Au, Phys. Rev. C, 72:014310 (2005)
    [41] G. Audi, M. Wang, A. H. Wapstra, F. G. Kondev, M. MacCormick, X. Xu, and B. Pfeifier, Chin. Phys. C, 36: 1287 (2012)
    [42] M. Stoitsov, R. B. Cakirli, R. F. Casten, W. Nazarewicz, and W. Satula, Phys. Rev. Lett., 98: 132502 (2007)
    [43] B.-N. Lu, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 85: 011301(R) (2012)
    [44] B.-N. Lu, J. Zhao, E.-G. Zhao, and S.-G. Zhou, Phys. Rev. C, 89: 014323 (2014)
    [45] B. Singh, R. Zywina, and R. B. Firestone, Nucl. Data Sheets, 97: 241 (2002)
    [46] S. Karatzikos, A. V. Afanasjev, G. A. Lalazissis, and P. Ring, Phys. Lett. B, 689: 72 (2010)
    [47] R. F. Garcia Ruiz et al, Nature Physics, 12: 594 (2016)
    [48] I. Angeli, K. P. Marinova, At. Data. Nucl. Data. Tab., 99: 69 (2013)
    [49] Z. G. Xiao, B. A. Li, L. W.Chen, G. C.Yong, and M. Zhang, Phys. Rev. Lett., 102: 062502 (2009)
    [50] P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C, 79:014308 (2009)
    [51] M. Bender, K. Rutz, P.-G. Reinhard, and J.A. Maruhn, Eur. Phys. J. A, 7: 467 (2000)
    [52] P.-G. Reinhard, M. Bender, W. Nazarewicz, and T. Vertse, Phys. Rev. C, 73: 014309 (2006)
    [53] R. Jodon, M. Bender, K. Bennaceur, and J. Meyer, Phys. Rev. C, 94: 024335 (2016)
    [54] K. Pomorski and J. Dudek, Phys. Rev. C, 67: 044316 (2003)
    [55] M. Durand, P. Schuck, X. Vinas, Z. Phys. A, 346: 87 (1993)
    [56] N. Nikolov, N. Schunck, W. Nazarewicz, M. Bender, and J. Pei, Phys. Rev. C, 83: 034305 (2011)
    [57] H. J. Lipkin, Ann. Phys., 9: 272 (1960)
    [58] Y. Nogami, Phys. Rev., 134: B313 (1964)
    [59] M. Samyn, S. Goriely, M. Bender, and J. M. Pearson, Phys. Rev. C, 70: 044309 (2004)
    [60] S. Goriely, M. Samyn, and J. M. Pearson, Phys. Rev. C, 75:064312 (2007)
  • 加载中

Get Citation
Zhi-Wei Zuo, Jun-Chen Pei, Xue-Yu Xiong and Yi Zhu. Global analysis of Skyrme forces with higher-order density dependencies[J]. Chinese Physics C, 2018, 42(6): 064106. doi: 10.1088/1674-1137/42/6/064106
Zhi-Wei Zuo, Jun-Chen Pei, Xue-Yu Xiong and Yi Zhu. Global analysis of Skyrme forces with higher-order density dependencies[J]. Chinese Physics C, 2018, 42(6): 064106.  doi: 10.1088/1674-1137/42/6/064106 shu
Milestone
Received: 2018-02-08
Fund

    Supported by National Natural Science Foundation of China (11522538)

Article Metric

Article Views(1514)
PDF Downloads(48)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Global analysis of Skyrme forces with higher-order density dependencies

  • 1. State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Fund Project:  Supported by National Natural Science Foundation of China (11522538)

Abstract: The density-dependent term in Skyrme forces is essential to simulate three-body and many-body correlations beyond the low-momentum two-body interaction. We speculate that a single density term may be insufficient and a higher-order density dependent term is added. The present work investigates the influence of higher-order density dependencies based on extended UNEDF0 and SkM* forces. Global descriptions of nuclear masses and charge radii are presented. The extended UNEDF0 force gives a global rms error on binding energies of 1.29 MeV. The influence on fission barriers and equation of state are also investigated. Perspectives to improve Skyrme forces are discussed, including global center-of-mass corrections and Lipkin-Nogami pairing corrections.

    HTML

Reference (60)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return