Processing math: 100%

Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision

Cited by

1. Li, H.-S., Feng, Y., Wang, F. Influence of the chiral magnetic effect on particle-pair elliptic anisotropy[J]. Physical Review C, 2025, 111(2): 024904. doi: 10.1103/PhysRevC.111.024904
2. Chen, J.-H., Dong, X., He, X.-H. et al. Properties of the QCD matter: review of selected results from the relativistic heavy ion collider beam energy scan (RHIC BES) program[J]. Nuclear Science and Techniques, 2024, 35(12): 214. doi: 10.1007/s41365-024-01591-2
3. Kharzeev, D.E., Liao, J., Tribedy, P. Chiral magnetic e®ect in heavy ion collisions: The present and future[J]. International Journal of Modern Physics E, 2024, 33(9): 2430007. doi: 10.1142/S0218301324300078
4. Yuan, Z., Huang, A., Zhou, W.-H. et al. Evolution of topological charge through chiral anomaly transport[J]. Physical Review C, 2024, 109(3): L031903. doi: 10.1103/PhysRevC.109.L031903
5. Siddique, I., Tabassam, U. Effect of electric and chiral magnetic conductivities on azimuthally fluctuating electromagnetic fields and observables in isobar collisions[J]. Physical Review C, 2024, 109(3): 034905. doi: 10.1103/PhysRevC.109.034905
6. Chen, B.-X., Zhao, X.-L., Ma, G.-L. Difference between signal and background of the chiral magnetic effect relative to spectator and participant planes in isobar collisions at sNN =200 GeV[J]. Physical Review C, 2024, 109(2): 024909. doi: 10.1103/PhysRevC.109.024909
7. Acharya, S., Adamová, D., Adler, A. et al. Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023. doi: 10.1016/j.physletb.2022.137453
8. Abdulhamid, M.I., Aboona, B.E., Adam, J. et al. Event-by-event correlations between Λ (Λ¯) hyperon global polarization and handedness with charged hadron azimuthal separation in Au+Au collisions at sNN =27 GeV from STAR[J]. Physical Review C, 2023, 108(1): 014909. doi: 10.1103/PhysRevC.108.014909
9. Zhao, X.-L., Ma, G.-L., Ma, Y.-G. Electromagnetic field effects and anomalous chiral phenomena in heavy-ion collisions at intermediate and high energy | [中高能重离子碰撞中的电磁场效应和手征反常现象][J]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(11): 20230245. doi: 10.7498/aps.72.20230245
10. Shou, Q.-Y., Zhao, J., Xu, H.-J. et al. Progress on the experimental search for the chiral magnetic effect, the chiral vortical effect, and the chiral magnetic wave | [相对论重离子碰撞中的手征效应实验研究][J]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(11): 112504. doi: 10.7498/aps.72.20230109
11. Aboona, B.E., Adam, J., Adamczyk, L. et al. Search for the chiral magnetic effect in Au+Au collisions at sNN=27 GeV with the STAR forward event plane detectors[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2023. doi: 10.1016/j.physletb.2023.137779
12. Huang, A., Shi, S., Lin, S. et al. Accessing topological fluctuations of gauge fields with the chiral magnetic effect[J]. Physical Review D, 2023, 107(3): 034012. doi: 10.1103/PhysRevD.107.034012
13. Huang, H.Z., Liu, F., Luo, X. et al. Collective Excitation in High-Energy Nuclear Collisions—In Memory of Professor Lianshou Liu[J]. Symmetry, 2023, 15(2): 499. doi: 10.3390/sym15020499
14. Kharzeev, D.E., Liao, J., Shi, S. Implications of the isobar-run results for the chiral magnetic effect in heavy-ion collisions[J]. Physical Review C, 2022, 106(5): L051903. doi: 10.1103/PhysRevC.106.L051903
15. Abdallah, M.S., Adam, J., Adamczyk, L. et al. Pair invariant mass to isolate background in the search for the chiral magnetic effect in Au + Au collisions at sNN =200 GeV[J]. Physical Review C, 2022, 106(3): 034908. doi: 10.1103/PhysRevC.106.034908
16. Abdallah, M.S., Adam, J., Adamczyk, L. et al. Search for the Chiral Magnetic Effect via Charge-Dependent Azimuthal Correlations Relative to Spectator and Participant Planes in Au+Au Collisions at sNN =200 GeV[J]. Physical Review Letters, 2022, 128(9): 092301. doi: 10.1103/PhysRevLett.128.092301
17. Feng, Y., Zhao, J., Li, H. et al. Two- and three-particle nonflow contributions to the chiral magnetic effect measurement by spectator and participant planes in relativistic heavy ion collisions[J]. Physical Review C, 2022, 105(2): 024913. doi: 10.1103/PhysRevC.105.024913
18. Qiu, S.. Rapidity-dependent charge-dependent flow, global polarisation and chiral magnetic effect in heavy ion collisions[J]. 2022. doi: 10.1051/epjconf/202227405001
19. Huang, X.G., Liang, Z.T., Liao, J.F. et al. Nuclear Matter Under Extreme External Fields[J]. Properties of QCD Matter at High Baryon Density, 2022. doi: 10.1007/978-981-19-4441-3_2
20. Abdallah, M.S., Aboona, B.E., Adam, J. et al. Search for the chiral magnetic effect with isobar collisions at[J]. Physical Review C, 2022, 105(1): 014901. doi: 10.1103/PhysRevC.105.014901
21. An, X., Bluhm, M., Du, L. et al. The BEST framework for the search for the QCD critical point and the chiral magnetic effect[J]. Nuclear Physics A, 2022. doi: 10.1016/j.nuclphysa.2021.122343
22. Lin, Z.-W., Zheng, L. Further developments of a multi-phase transport model for relativistic nuclear collisions[J]. Nuclear Science and Techniques, 2021, 32(10): 113. doi: 10.1007/s41365-021-00944-5
23. Feng, Y., Lin, Y., Zhao, J. et al. Revisit the chiral magnetic effect expectation in isobaric collisions at the relativistic heavy ion collider[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2021. doi: 10.1016/j.physletb.2021.136549
24. Guerrero-Rodríguez, P., Lappi, T. Evolution of initial stage fluctuations in the glasma[J]. Physical Review D, 2021, 104(1): 014011. doi: 10.1103/PhysRevD.104.014011
25. Feng, Y., Zhao, J., Xu, H.-J. et al. Deciphering the R ψm correlator in search for the chiral magnetic effect in relativistic heavy ion collisions[J]. Physical Review C, 2021, 103(3): 034912. doi: 10.1103/PhysRevC.103.034912
26. Zhao, J.. Search for CME in U+U and Au+Au collisions in STAR with different approaches of handling backgrounds[J]. Nuclear Physics A, 2021. doi: 10.1016/j.nuclphysa.2020.121766
27. Kharzeev, D.E., Liao, J. Chiral magnetic effect reveals the topology of gauge fields in heavy-ion collisions[J]. Nature Reviews Physics, 2021, 3(1): 55-63. doi: 10.1038/s42254-020-00254-6
28. Shi, S., Zhang, H., Hou, D. et al. Signatures of Chiral Magnetic Effect in the Collisions of Isobars[J]. Physical Review Letters, 2020, 125(24): 242301. doi: 10.1103/PhysRevLett.125.242301
29. Liang, G.-R., Li, M. Charge-dependent correlations in heavy-ion collisions from stochastic hydrodynamics[J]. Communications in Theoretical Physics, 2020, 72(11): 115304. doi: 10.1088/1572-9494/abb7d9
30. Li, W., Wang, G. Chiral magnetic effects in nuclear collisions[J]. Annual Review of Nuclear and Particle Science, 2020. doi: 10.1146/annurev-nucl-030220-065203
31. Magdy, N., Nie, M.-W., Ma, G.-L. et al. A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2020. doi: 10.1016/j.physletb.2020.135771
32. Liang, G.-R., Liao, J., Lin, S. et al. Chiral magnetic effect in isobar collisions from stochastic hydrodynamics[J]. Chinese Physics C, 2020, 44(9): 094103. doi: 10.1088/1674-1137/44/9/094103
33. Gao, J.-H., Ma, G.-L., Pu, S. et al. Recent developments in chiral and spin polarization effects in heavy-ion collisions[J]. Nuclear Science and Techniques, 2020, 31(9): 90. doi: 10.1007/s41365-020-00801-x
34. Tribedy, P.. Status of CME Search before Isobar Collisions and Methods of Blind Analysis from STAR[J]. Journal of Physics: Conference Series, 2020, 1602(1): 12002. doi: 10.1088/1742-6596/1602/1/012002
35. Liu, Y.-C., Huang, X.-G. Anomalous chiral transports and spin polarization in heavy-ion collisions[J]. Nuclear Science and Techniques, 2020, 31(6): 56. doi: 10.1007/s41365-020-00764-z
36. Tang, A.H.. Probe chiral magnetic effect with signed balance function[J]. Chinese Physics C, 2020, 44(5): 054101. doi: 10.1088/1674-1137/44/5/054101
37. Bzdak, A., Esumi, S., Koch, V. et al. Mapping the phases of quantum chromodynamics with beam energy scan[J]. Physics Reports, 2020. doi: 10.1016/j.physrep.2020.01.005
38. Zhao, J., Feng, Y., Li, H. et al. Hijing can describe the anisotropy-scaled charge-dependent correlations at the BNL Relativistic Heavy Ion Collider[J]. Physical Review C, 2020, 101(3): 034912. doi: 10.1103/PhysRevC.101.034912
39. Feng, Y., Zhao, J., Wang, F. Back-to-back relative-excess observable to identify the chiral magnetic effect[J]. Physical Review C, 2020, 101(1): 014915. doi: 10.1103/PhysRevC.101.014915
40. Li, G., Zhou, K., Chen, B. Effects of nuclear charge fluctuations on dilepton photoproduction[J]. Communications in Theoretical Physics, 2020, 72(2): 025301. doi: 10.1088/1572-9494/ab5cff
41. Zhao, J.. Recent Results on Light Flavor from STAR[J]. Springer Proceedings in Physics, 2020. doi: 10.1007/978-3-030-53448-6_9
42. Adam, J., Adamczyk, L., Adams, J.R. et al. Charge-dependent pair correlations relative to a third particle in p + Au and d + Au collisions at RHIC[J]. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2019. doi: 10.1016/j.physletb.2019.134975
43. Guerrero-Rodríguez, P.. Topological charge fluctuations in the Glasma[J]. Journal of High Energy Physics, 2019, 2019(8): 26. doi: 10.1007/JHEP08(2019)026
44. Zhao, J., Wang, F. Experimental searches for the chiral magnetic effect in heavy-ion collisions[J]. Progress in Particle and Nuclear Physics, 2019. doi: 10.1016/j.ppnp.2019.05.001
45. Xu, H.-J., Zhao, J., Wang, X. et al. Re-examining the premise of isobaric collisions and a novel method to measure the chiral magnetic effect[J]. Nuclear Physics A, 2019. doi: 10.1016/j.nuclphysa.2018.11.031
46. Zhao, J.. Measurements of the chiral magnetic effect with background isolation in 200 GeV Au+Au collisions at STAR[J]. Nuclear Physics A, 2019. doi: 10.1016/j.nuclphysa.2018.08.035
47. Lin, S., Yang, L. Mass correction to chiral vortical effect and chiral separation effect[J]. Physical Review D, 2018, 98(11): 114022. doi: 10.1103/PhysRevD.98.114022
48. Wang, F.-Q., Zhao, J. Search for the chiral magnetic effect in heavy ion collisions[J]. Nuclear Science and Techniques, 2018, 29(12): 179. doi: 10.1007/s41365-018-0520-z
49. Voloshin, S.A.. Estimate of the signal from the chiral magnetic effect in heavy-ion collisions from measurements relative to the participant and spectator flow planes[J]. Physical Review C, 2018, 98(5): 054911. doi: 10.1103/PhysRevC.98.054911
50. Zhou, W.-H., Xu, J. Simulating the chiral magnetic wave in a box system[J]. Physical Review C, 2018, 98(4): 044904. doi: 10.1103/PhysRevC.98.044904
51. Müller, B., Schäfer, A. Chiral magnetic effect and an experimental bound on the late time magnetic field strength[J]. Physical Review D, 2018, 98(7): 071901. doi: 10.1103/PhysRevD.98.071902
Get Citation
Hao-Jie Xu, Jie Zhao, Xiao-Bao Wang, Han-Lin Li, Zi-Wei Lin, Cai-Wan Shen and Fu-Qiang Wang. Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision[J]. Chinese Physics C, 2018, 42(8): 084103. doi: 10.1088/1674-1137/42/8/084103
Hao-Jie Xu, Jie Zhao, Xiao-Bao Wang, Han-Lin Li, Zi-Wei Lin, Cai-Wan Shen and Fu-Qiang Wang. Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision[J]. Chinese Physics C, 2018, 42(8): 084103.  doi: 10.1088/1674-1137/42/8/084103 shu
Milestone
Received: 2018-04-26
Fund

    Supported by National Natural Science Foundation of China (11647306, 11747312, U1732138, 11505056, 11605054, 11628508) and US Department of Energy (DE-SC0012910)

Article Metric

Article Views(3280)
PDF Downloads(54)
Cited by(51)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Varying the chiral magnetic effect relative to flow in a single nucleus-nucleus collision

  • 1.  School of Science, Huzhou University, Huzhou, Zhejiang 313000, China
  • 2.  Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
  • 3.  College of Science, Wuhan University of Science and Technology, Wuhan, Hubei 430065, China
  • 4. Department of Physics, East Carolina University, Greenville, North Carolina 27858, USA
  • 5. Key Laboratory of Quarks and Lepton Physics(MOE) and Institute of Particle Physics, Central China Normal University, Wuhan, Hubei 430079, China
  • 6. School of Science, Huzhou University, Huzhou, Zhejiang 313000, China
  • 7. Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
Fund Project:  Supported by National Natural Science Foundation of China (11647306, 11747312, U1732138, 11505056, 11605054, 11628508) and US Department of Energy (DE-SC0012910)

Abstract: We propose a novel method to search for the chiral magnetic effect (CME) in heavy ion collisions. We argue that the relative strength of the magnetic field (mainly from spectator protons and responsible for the CME) with respect to the reaction plane and the participant plane is opposite to that of the elliptic flow background arising from the fluctuating participant geometry. This opposite behavior in a single collision system, hence with small systematic uncertainties, can be exploited to extract the possible CME signal from the flow background. The method is applied to existing data from hic, and the outcome discussed.

    HTML

Reference (73)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return