Effects of σ* and φ on the proto-neutron star PSR J0348+0432

  • The influence of σ* and φ on the proto-neutron star (PNS) PSR J0348+0432 is described by the relativistic mean field theory (RMFT) through choosing effective coupling constants. We use an entropy per baryon S=1 to describe the thermal effects on PSR J0348+0432 in this work and compare this PNS with and without σ*, φ. These effects include the particle number distribution, mass-radius relation, moment of inertia and surface gravitational redshift. The PNS PSR J0348+0432 with σ* and φ has more nucleons and will push forward the threshold for the appearance of the hyperons. The mass-radius relations are (2.010M, 12.6520 km) with σ* and φ and (2.010M, 12.6170 km) without σ* and φ. The moments of inertia corresponding to PNS PSR J0348+0432 are (2.010M, 1.510×1045 g·cm2) and (2.010M, 1.559×1045 g·cm2) respectively, and the surface gravitational redshifts are (2.010M, 0.3747) and (2.010M, 0.3701) respectively. With the help of these calculations, we study the restriction of σ* and φ on the interactions between baryons in the PNS core.
      PCAS:
  • 加载中
  • [1] B. P. Abbott et al, Phys. Rev. Lett., 119:161101 (2017)
    [2] D. A. Coulter, R. J. Foley, C. D. Kilpatrick, M. R. Drout, A. L. Piro, B. J. Shappee, M. R. Siebert, J. D. Simon, N. Ulloa, D. Kasen, B. F. Madore, A. Murguia-Berthier, Y.-C. Pan, J. X. Prochaska, E. Ramirez-Ruiz, A. Rest, and C. Rojas-Bravo, Science, 358:1556 (2017)
    [3] P. B. Demorest, T. Pennucci, and S. M. Ransom et al, Nature(London), 467:1081 (2010)
    [4] J. Antoniadis, P. C. C. Freire et al, Science, 340:448 (2013)
    [5] B. Hong, H. Y. Jia, X. L. Mu, and X. Zhou, Chin. Phys. C, 40:065101 (2016)
    [6] Prasanta Char and Sarmistha Banik, Phys. Rev. C, 90:015801 (2014)
    [7] Feryal zel, Dimitrios Psaltis et al, Astrophys. J. Lett., 724:L199-L202 (2010)
    [8] Z. Zhang, L. W. Chen, Phys. Rev. C, 94:064326 (2016)
    [9] Ritam Mallick, Phys. Rev. C, 87:025804 (2013)
    [10] Q. F. Xiang, W. Z. Jiang, D. R. Zhang, and R. Y. Yang, Phys. Rev. C, 89:025803 (2014)
    [11] L. Ang et al, Chin. phys, 16:1934 (2007)
    [12] J. Schaffner, C. B. Dover, A. Gal, C. Greiner, and H. Stcker, Phys. Rev. Lett., 71:1328 (1993)
    [13] H. Zheng, L. W. Chen, Phys. Rev. D, 85:043013 (2012)
    [14] S. Gandolfi, J. Carlson, and Sanjay Reddy, Phys. Rev. C, 85:032801 (2012)
    [15] Y. Sugahara, H. Toki, Nucl. Phys. A, 579:557 (1994)
    [16] X. F. Zhao, Phys. Rev. C, 92:055802 (2015)
    [17] Norman K. Glendenning, Phys. Rev. C, 23:2757 (1981)
    [18] M. M. Sharma, M. A. Nagarajan, P. Ring, Phys. Lett. B, 312:377 (1993)
    [19] W. Koepf, M. M. Sharma, P. Ring, Nucl. Phys. A, 533:95 (1991)
    [20] Z. Z. Ren, Phys. Rev. C, 65:051304 (2002)
    [21] J. Boguta, A. R. Bodmer, Nucl. Phys. A, 292:413 (1977)
    [22] J. Schaffner, C. B. Dover, A. Gal, C. Greiner, D. J. Millener, and H. Stcker, Ann. Phys., 235:35 (1994)
    [23] Madappa Prakash, Ignazio Bombaci, Manju Prakash, Paul J. Ellis, James M. Lattimer, and Roland Knorren, Phys. Reps., 280:1 (1997)
    [24] J. R. Oppenheimer, and G. M. Volkoff, Phys. Rev., 55:374 (1939)
    [25] F. J. Fattoyev, and J. Piekarewicz, Phys. Rev. C, 82:025810 (2010)
    [26] Lee Lindblom, Astrophys. J., 278:364 (1984)
    [27] Benjamin D. Lackey, Mohit Nayyar, and Benjamin J. Owen, Phys. Rev. D, 73:024021 (2006)
    [28] N. K. Glendenning, Astrophys. J., 293:470 (1985)
    [29] S. Weissenborn, D. Chatterjee, and J. Schaffner-Bielich, Nucl. Phys. A, 881:62 (2012)
    [30] D. J. Millener, C. B. Dover, and A. Gal, Phys. Rev. C, 38:2700 (1988)
    [31] J. Schaffner, C. Greiner, and H. Stcker, Phys. Rev. C, 46:322 (1992)
    [32] C. J. Batty, E. Friedman, and A. Gal, Phys. Reps., 287:385 (1997)
    [33] J. Schaffner-Bielich, A. Gal, Phys. Rev. C, 62:034311 (2000)
    [34] S. Aoki, S. Y. Bahk, K. S. Chung et al, Phys. Lett. B, 355:45 (1995)
    [35] P. Khaustov, D. E. Alburger et al, Phys. Rev. C, 61:054603 (2000)
    [36] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett., 67:2414 (1991)
    [37] S. Pal, M. Hanauske, I. Zakout, H. Stcker, and W. Greiner, Phys. Rev. C, 60:015802 (1999)
    [38] X. L. Mu, H. Y. Jia, X. Zhou, and H. Wang, Astrophys. J, 846:140 (2017)
  • 加载中

Get Citation
Bin Hong and Zhong-Zhou Ren. Effects of σ* and φ on the proto-neutron star PSR J0348+0432[J]. Chinese Physics C, 2018, 42(8): 084105. doi: 10.1088/1674-1137/42/8/084105
Bin Hong and Zhong-Zhou Ren. Effects of σ* and φ on the proto-neutron star PSR J0348+0432[J]. Chinese Physics C, 2018, 42(8): 084105.  doi: 10.1088/1674-1137/42/8/084105 shu
Milestone
Received: 2018-05-03
Fund

    Supported by National Natural Science Foundation of China (11535004, 11761161001) and the National Major State Basic Research and Development Program of China (2016YFE0129300)

Article Metric

Article Views(1873)
PDF Downloads(27)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Effects of σ* and φ on the proto-neutron star PSR J0348+0432

  • 1.  Department of Physics, Nanjing University, Nanjing 210008, China
  • 2. Department of Physics, Nanjing University, Nanjing 210008, China
  • 3. School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
Fund Project:  Supported by National Natural Science Foundation of China (11535004, 11761161001) and the National Major State Basic Research and Development Program of China (2016YFE0129300)

Abstract: The influence of σ* and φ on the proto-neutron star (PNS) PSR J0348+0432 is described by the relativistic mean field theory (RMFT) through choosing effective coupling constants. We use an entropy per baryon S=1 to describe the thermal effects on PSR J0348+0432 in this work and compare this PNS with and without σ*, φ. These effects include the particle number distribution, mass-radius relation, moment of inertia and surface gravitational redshift. The PNS PSR J0348+0432 with σ* and φ has more nucleons and will push forward the threshold for the appearance of the hyperons. The mass-radius relations are (2.010M, 12.6520 km) with σ* and φ and (2.010M, 12.6170 km) without σ* and φ. The moments of inertia corresponding to PNS PSR J0348+0432 are (2.010M, 1.510×1045 g·cm2) and (2.010M, 1.559×1045 g·cm2) respectively, and the surface gravitational redshifts are (2.010M, 0.3747) and (2.010M, 0.3701) respectively. With the help of these calculations, we study the restriction of σ* and φ on the interactions between baryons in the PNS core.

    HTML

Reference (38)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return