×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

A minimal gauge inflation model

  • In this paper, we present a gauge inflation model based on the orbifold M4×S1/Z2 with non-Abelian SU(2) gauge symmetry, which is probably the simplest model in this category. As the inflaton potential is fully radiatively generated exclusively by gauge self-interactions, the model is predictive; thus, it is protected by gauge symmetry itself, without the introduction of any additional matter fields or arbitrary interactions. We show that the model fully agrees with the recent cosmological observations within the controlled perturbative regime of gauge interactions, g4 ≲ 1/(2πRMP), with the compactification radius (10 ≲ RMP ≲ 100):the expected magnitude of the curvature perturbation power spectrum and the value of the corresponding spectral index are in perfect agreement with the recent observations. The model also predicts a large fraction of the gravitational waves, negligible non-Gaussianity, and a sufficiently high reheating temperature.
      PCAS:
  • 加载中
  • [1] A. H. Guth, Phys. Rev. D, 23:347 (1981); A. D. Linde, Phys. Lett. B, 108:389 (1982); A. Albrecht and P. J. Steinhardt, Phys. Rev. Lett., 48:1220 (1982)
    [2] A. R. Liddle and D. H. Lyth, Cosmological inflation and large-scale structure, Cambridge, UK:Univ. Pr. (2000) p. 400; V. Mukhanov, Physical foundations of cosmology, Cambridge, UK:Univ. Pr. (2005) p. 421
    [3] D. H. Lyth and A. Riotto, Phys. Rept., 314:1 (1999)[arXiv:hep-ph/9807278]
    [4] S. Alam et al (BOSS Collaboration), Mon. Not. Roy. Astron. Soc., 470(3):2617 (2017)[arXiv:1607.03155[astro-ph.CO]]; T. M. C. Abbott et al (DES Collaboration), arXiv:1708.01530[astro-ph.CO]
    [5] P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A13 (2016) doi:10.1051/0004-6361/201525830[arXiv:1502.01589[astro-ph.CO]]; P. A. R. Ade et al (Planck Collaboration), Astron. Astrophys., 594:A20 (2016)[arXiv:1502.02114[astro-ph.CO]]
    [6] Y. Hamada, H. Kawai, K. y. Oda, and S. C. Park, Phys. Rev. Lett., 112(24):241301 (2014)[arXiv:1403.5043[hep-ph]]; Y. Hamada, H. Kawai, K. y. Oda, and S. C. Park, Phys. Rev. D, 91:053008 (2015)[arXiv:1408.4864[hep-ph]]
    [7] K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. Lett., 65:3233 (1990); F. C. Adams, J. R. Bond, K. Freese, J. A. Frieman, and A. V. Olinto, Phys. Rev. D, 47:426 (1993)[arXiv:hep-ph/9207245]
    [8] J. E. Kim, H. P. Nilles, and M. Peloso, JCAP, 0501:005 (2005)[hep-ph/0409138]
    [9] N. Arkani-Hamed, H. C. Cheng, P. Creminelli, and L. Randall, Phys. Rev. Lett., 90:221302 (2003)[arXiv:hep-th/0301218]; D. E. Kaplan and N. J. Weiner, JCAP, 0402:005 (2004)[arXiv:hep-ph/0302014]
    [10] S. C. Park, JCAP, 11:001 (2007)[arXiv:0704.3920[hep-th]]
    [11] M. Kubo, C. S. Lim, and H. Yamashita, Mod. Phys. Lett. A, 17:2249 (2002)[arXiv:hep-ph/0111327]
    [12] G. Cacciapaglia, C. Csaki, and S. C. Park, JHEP, 0603:099 (2006)[arXiv:hep-ph/0510366]
    [13] N. Haba, Y. Hosotani, and Y. Kawamura, Prog. Theor. Phys., 111:265 (2004)[arXiv:hep-ph/0309088]
    [14] J. O. Gong and E. D. Stewart, Phys. Lett. B, 510:1 (2001)[arXiv:astro-ph/0101225]
    [15] E. Komatsu and D. N. Spergel, Phys. Rev. D, 63:063002 (2001)[arXiv:astro-ph/0005036]
    [16] S. Dodelson and E. Stewart, Phys. Rev. D, 65:101301 (2002)[arXiv:astro-ph/0109354]; E. D. Stewart, Phys. Rev. D, 65:103508 (2002)[arXiv:astro-ph/0110322]; J. Choe, J. O. Gong, and E. D. Stewart, JCAP, 0407:012 (2004)[arXiv:hep-ph/0405155]
    [17] J. O. Gong, Phys. Rev. D, 79:063520 (2009)[arXiv:0710.3835[astro-ph]]
    [18] N. Arkani-Hamed, L. Motl, A. Nicolis, and C. Vafa, JHEP, 0706:060 (2007)[arXiv:hep-th/0601001]
    [19] J. O. Gong, Phys. Rev. D, 75:043502 (2007)[arXiv:hep-th/0611293]
    [20] P. A. R. Ade et al (BICEP2 and Keck Array Collaborations), Phys. Rev. Lett., 116:031302 (2016)[arXiv:1510.09217[astro-ph.CO]]
    [21] A. D. Linde, Particle physics and inflationary cosmology, Chur, Switzerland:Harwood (1990) p. 362
  • 加载中

Get Citation
Jinn-Ouk Gong and Seong Chan Park. A minimal gauge inflation model[J]. Chinese Physics C, 2018, 42(9): 095102. doi: 10.1088/1674-1137/42/9/095102
Jinn-Ouk Gong and Seong Chan Park. A minimal gauge inflation model[J]. Chinese Physics C, 2018, 42(9): 095102.  doi: 10.1088/1674-1137/42/9/095102 shu
Milestone
Received: 2018-06-04
Fund

    supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2016R1A2B2016112)

Article Metric

Article Views(1747)
PDF Downloads(61)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A minimal gauge inflation model

    Corresponding author: Seong Chan Park,
  • 1.  Korea Astronomy and Space Science Institute, Daejeon 34055, Korea
  • 2.  Department of Physics and IPAP, Yonsei University, Seoul 03722, Korea
Fund Project:  supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (2016R1A2B2016112)

Abstract: In this paper, we present a gauge inflation model based on the orbifold M4×S1/Z2 with non-Abelian SU(2) gauge symmetry, which is probably the simplest model in this category. As the inflaton potential is fully radiatively generated exclusively by gauge self-interactions, the model is predictive; thus, it is protected by gauge symmetry itself, without the introduction of any additional matter fields or arbitrary interactions. We show that the model fully agrees with the recent cosmological observations within the controlled perturbative regime of gauge interactions, g4 ≲ 1/(2πRMP), with the compactification radius (10 ≲ RMP ≲ 100):the expected magnitude of the curvature perturbation power spectrum and the value of the corresponding spectral index are in perfect agreement with the recent observations. The model also predicts a large fraction of the gravitational waves, negligible non-Gaussianity, and a sufficiently high reheating temperature.

    HTML

Reference (21)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return