Loading [MathJax]/jax/output/HTML-CSS/jax.js

Symmetry properties of nonlocal quark bilinear operators on a Lattice (LP3 Collaboration)

  • Using symmetry properties, we determine the mixing pattern of a class of nonlocal quark bilinear operators containing a straight Wilson line along a spatial direction. We confirm the previous study that mixing among the lowest dimensional operators, which have a mass dimension equal to three, can occur if chiral symmetry is broken in the lattice action. For higher dimensional operators, we find that the dimension-three operators will always mix with dimension-four operators, even if chiral symmetry is preserved. Also, the number of dimension-four operators involved in the mixing is large, and hence it is impractical to remove the mixing by the improvement procedure. Our result is important for determining the Bjorken-x dependence of the parton distribution functions using the quasi-distribution method on a Euclidean lattice. The requirement of using large hadron momentum in this approach makes the control of errors from dimension-four operators even more important.
  • [1] G. Martinelli, C. Pittori, C. T. Sachrajda et al, Nucl. Phys. B, 445: 81 (1995), arXiv:hep-lat/9411010
    [2] K. Symanzik, Nucl. Phys. B, 226: 187 (1983)
    [3] M. Luscher and P. Weisz, Commun. Math. Phys., 97: 59 (1985), [Erratum: Commun. Math. Phys., 98: 433 (1985)]
    [4] N. S. Craigie and H. Dorn, Nucl. Phys. B, 185: 204 (1981)
    [5] H. Dorn, Fortsch. Phys., 34: 11 (1986)
    [6] X. Ji, Phys. Rev. Lett., 110: 262002 (2013), arXiv:1305.1539 doi: 10.1103/PhysRevLett.110.262002
    [7] Y.-Q. Ma and J.-W. Qiu, (2014), arXiv: 1404.6860
    [8] A. V. Radyushkin, Phys. Rev. D, 96: 034025 (2017), arXiv:1705.01488
    [9] H.-W. Lin, J.-W. Chen, S. D. Cohen et al, Phys. Rev. D, 91: 054510 (2015), arXiv:1402.1462
    [10] J.-W. Chen, S. D. Cohen, X. Ji et al, Nucl. Phys. B, 911: 246 (2016), arXiv:1603.06664
    [11] H.-W. Lin, J.-W. Chen, T. Ishikawa et al, (2017), arXiv: 1708.05301
    [12] C. Alexandrou, K. Cichy, V. Drach et al, Phys. Rev. D, 92: 014502 (2015), arXiv:1504.07455
    [13] C. Alexandrou, K. Cichy, M. Constantinou et al, Phys. Rev. D, 96: 014513 (2017), arXiv:1610.03689
    [14] C. Alexandrou, K. Cichy, M. Constantinou et al, Nucl. Phys. B, 923: 394 (2017), arXiv:1706.00265
    [15] J.-W. Chen, T. Ishikawa, L. Jin et al, Phys. Rev. D, 97: 014505 (2018), arXiv:1706.01295
    [16] J.-H. Zhang, J.-W. Chen, X. Ji et al, Phys. Rev. D, 95: 094514 (2017), arXiv:1702.00008
    [17] J.-W. Chen, L. Jin, H.-W. Lin et al, (2017), arXiv: 1712.10025
    [18] X. Xiong, X. Ji, J.-H. Zhang et al, Phys. Rev. D, 90: 014051 (2014), arXiv:1310.7471
    [19] X. Ji and J.-H. Zhang, Phys. Rev. D, 92: 034006 (2015), arXiv:1505.07699
    [20] X. Ji, A. Schäfer, X. Xiong et al, Phys. Rev. D, 92: 014039 (2015), arXiv:1506.00248
    [21] X. Xiong and J.-H. Zhang, Phys. Rev. D, 92: 054037 (2015), arXiv:1509.08016 doi: 10.1103/PhysRevD.92.054037
    [22] X. Ji, P. Sun, X. Xiong et al, Phys. Rev. D, 91: 074009 (2015), arXiv:1405.7640
    [23] C. Monahan, (2017), arXiv: 1710.04607
    [24] X. Ji, L.-C. Jin, F. Yuan et al, (2018), arXiv: 1801.05930
    [25] I. W. Stewart and Y. Zhao, (2017), arXiv: 1709.04933
    [26] M. Constantinou and H. Panagopoulos, Phys. Rev. D, 96: 054506 (2017), arXiv:1705.11193
    [27] J. Green, K. Jansen, and F. Steffens, (2017), arXiv: 1707.07152
    [28] T. Izubuchi, X. Ji, L. Jin et al, (2018), arXiv: 1801.03917
    [29] X. Xiong, T. Luu, and U.-G. Meißner, (2017), arXiv: 1705.00246
    [30] W. Wang, S. Zhao, and R. Zhu, Eur. Phys. J. C, 78: 147 (2018), arXiv:1708.02458
    [31] W. Wang and S. Zhao, (2017), arXiv: 1712.09247
    [32] J. Xu, Q.-A. Zhang, and S. Zhao, (2018), arXiv: 1804.01042
    [33] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu et al, (2016), arXiv: 1609.02018
    [34] J.-W. Chen, X. Ji, and J.-H. Zhang, Nucl. Phys. B, 915: 1 (2017), arXiv:1609.08102
    [35] X. Ji, J.-H. Zhang, and Y. Zhao, (2017), arXiv: 1706.08962
    [36] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu et al, Phys. Rev. D, 96: 094019 (2017), arXiv:1707.03107
    [37] J.-W. Chen, T. Ishikawa, L. Jin et al, (2017), arXiv: 1710.01089
    [38] J.-W. Chen, T. Ishikawa, L. Jin et al, (2017), arXiv: 1711.07858
    [39] H.-n. Li, Phys. Rev. D, 94: 074036 (2016), arXiv:1602.07575
    [40] C. Monahan and K. Orginos, JHEP, 03: 116 (2017), arXiv:1612.01584
    [41] A. Radyushkin, Phys. Lett. B, 767: 314 (2017), arXiv:1612.05170
    [42] G. C. Rossi and M. Testa, Phys. Rev. D, 96: 014507 (2017), arXiv:1706.04428
    [43] C. E. Carlson and M. Freid, Phys. Rev. D, 95: 094504 (2017), arXiv:1702.05775
    [44] X. Ji, J.-H. Zhang, and Y. Zhao, Nucl. Phys. B, 924: 366 (2017), arXiv:1706.07416
    [45] J.-W. Chen, L. Jin, H.-W. Lin et al, (2018), arXiv: 1803.04393
    [46] C. Alexandrou, K. Cichy, M. Constantinou et al, (2018), arXiv: 1803.02685
    [47] L. Gamberg, Z.-B. Kang, I. Vitev et al, Phys. Lett. B, 743: 112 (2015), arXiv:1412.3401
    [48] S.-i. Nam, Mod. Phys. Lett. A, 32: 1750218 (2017), arXiv:1704.03824
    [49] W. Broniowski and E. Ruiz Arriola, Phys. Lett. B, 773: 385 (2017), arXiv:1707.09588
    [50] Y. Jia, S. Liang, L. Li et al, JHEP, 11: 151 (2017), arXiv:1708.09379
    [51] T. J. Hobbs, Phys. Rev. D, 97: 054028 (2018), arXiv:1708.05463
    [52] Y. Jia and X. Xiong, Phys. Rev. D, 94: 094005 (2016), arXiv:1511.04430
    [53] J.-W. Chen, L. Jin, H.-W. Lin et al, (2018), arXiv: 1804.01483
    [54] K. Orginos, A. Radyushkin, J. Karpie et al, Phys. Rev. D, 96: 094503 (2017), arXiv:1706.05373
    [55] A. Radyushkin, (2018), arXiv: 1801.02427
    [56] J.-H. Zhang, J.-W. Chen, and C. Monahan, (2018), arXiv: 1801.03023
    [57] B. U. Musch, P. Hagler, J. W. Negele et al, Phys. Rev. D, 83: 094507 (2011), arXiv:1011.1213
    [58] T. Ishikawa, EPJ Web Conf., 175: 06028 (2018), arXiv:1802.02333 doi: 10.1051/epjconf/201817506028
    [59] G. S. Bali, B. Lang, B. U. Musch et al, Phys. Rev. D, 93: 094515 (2016), arXiv:1602.05525
    [60] C. Gattringer and C. B. Lang, Lect. Notes Phys., 788: 1 (2010) doi: 10.1007/978-3-642-01850-3
    [61] R. Sommer, in Modern perspectives in lattice QCD: Quantum field theory and high performance computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3-28, 2009(2010), pp. 517-590, 1008.0710, URL http://inspirehep.net/record/864434/files/arXiv:1008.0710.pdf
    [62] R. Sommer, Nucl. Part. Phys. Proc., 261-262: 338 (2015), arXiv:1501.03060 doi: 10.1016/j.nuclphysbps.2015.03.022
    [63] D. Becirevic and J. Reyes, Nucl. Phys. Proc. Suppl., 129: 435 (2004)
    [64] B. Blossier, Phys. Rev. D, 76: 114513 (2007), arXiv:0705.0283
    [65] T. Ishikawa, Y. Aoki, J. M. Flynn et al, JHEP, 05: 040 (2011), arXiv:1101.1072
    [66] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B, 259: 572 (1985)
    [67] G. Heatlie, G. Martinelli, C. Pittori et al, Nucl. Phys. B, 352: 266 (1991)
    [68] A. Borrelli, C. Pittori, R. Frezzotti et al, Nucl. Phys. B, 409: 382 (1993)
  • [1] G. Martinelli, C. Pittori, C. T. Sachrajda et al, Nucl. Phys. B, 445: 81 (1995), arXiv:hep-lat/9411010
    [2] K. Symanzik, Nucl. Phys. B, 226: 187 (1983)
    [3] M. Luscher and P. Weisz, Commun. Math. Phys., 97: 59 (1985), [Erratum: Commun. Math. Phys., 98: 433 (1985)]
    [4] N. S. Craigie and H. Dorn, Nucl. Phys. B, 185: 204 (1981)
    [5] H. Dorn, Fortsch. Phys., 34: 11 (1986)
    [6] X. Ji, Phys. Rev. Lett., 110: 262002 (2013), arXiv:1305.1539 doi: 10.1103/PhysRevLett.110.262002
    [7] Y.-Q. Ma and J.-W. Qiu, (2014), arXiv: 1404.6860
    [8] A. V. Radyushkin, Phys. Rev. D, 96: 034025 (2017), arXiv:1705.01488
    [9] H.-W. Lin, J.-W. Chen, S. D. Cohen et al, Phys. Rev. D, 91: 054510 (2015), arXiv:1402.1462
    [10] J.-W. Chen, S. D. Cohen, X. Ji et al, Nucl. Phys. B, 911: 246 (2016), arXiv:1603.06664
    [11] H.-W. Lin, J.-W. Chen, T. Ishikawa et al, (2017), arXiv: 1708.05301
    [12] C. Alexandrou, K. Cichy, V. Drach et al, Phys. Rev. D, 92: 014502 (2015), arXiv:1504.07455
    [13] C. Alexandrou, K. Cichy, M. Constantinou et al, Phys. Rev. D, 96: 014513 (2017), arXiv:1610.03689
    [14] C. Alexandrou, K. Cichy, M. Constantinou et al, Nucl. Phys. B, 923: 394 (2017), arXiv:1706.00265
    [15] J.-W. Chen, T. Ishikawa, L. Jin et al, Phys. Rev. D, 97: 014505 (2018), arXiv:1706.01295
    [16] J.-H. Zhang, J.-W. Chen, X. Ji et al, Phys. Rev. D, 95: 094514 (2017), arXiv:1702.00008
    [17] J.-W. Chen, L. Jin, H.-W. Lin et al, (2017), arXiv: 1712.10025
    [18] X. Xiong, X. Ji, J.-H. Zhang et al, Phys. Rev. D, 90: 014051 (2014), arXiv:1310.7471
    [19] X. Ji and J.-H. Zhang, Phys. Rev. D, 92: 034006 (2015), arXiv:1505.07699
    [20] X. Ji, A. Schäfer, X. Xiong et al, Phys. Rev. D, 92: 014039 (2015), arXiv:1506.00248
    [21] X. Xiong and J.-H. Zhang, Phys. Rev. D, 92: 054037 (2015), arXiv:1509.08016 doi: 10.1103/PhysRevD.92.054037
    [22] X. Ji, P. Sun, X. Xiong et al, Phys. Rev. D, 91: 074009 (2015), arXiv:1405.7640
    [23] C. Monahan, (2017), arXiv: 1710.04607
    [24] X. Ji, L.-C. Jin, F. Yuan et al, (2018), arXiv: 1801.05930
    [25] I. W. Stewart and Y. Zhao, (2017), arXiv: 1709.04933
    [26] M. Constantinou and H. Panagopoulos, Phys. Rev. D, 96: 054506 (2017), arXiv:1705.11193
    [27] J. Green, K. Jansen, and F. Steffens, (2017), arXiv: 1707.07152
    [28] T. Izubuchi, X. Ji, L. Jin et al, (2018), arXiv: 1801.03917
    [29] X. Xiong, T. Luu, and U.-G. Meißner, (2017), arXiv: 1705.00246
    [30] W. Wang, S. Zhao, and R. Zhu, Eur. Phys. J. C, 78: 147 (2018), arXiv:1708.02458
    [31] W. Wang and S. Zhao, (2017), arXiv: 1712.09247
    [32] J. Xu, Q.-A. Zhang, and S. Zhao, (2018), arXiv: 1804.01042
    [33] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu et al, (2016), arXiv: 1609.02018
    [34] J.-W. Chen, X. Ji, and J.-H. Zhang, Nucl. Phys. B, 915: 1 (2017), arXiv:1609.08102
    [35] X. Ji, J.-H. Zhang, and Y. Zhao, (2017), arXiv: 1706.08962
    [36] T. Ishikawa, Y.-Q. Ma, J.-W. Qiu et al, Phys. Rev. D, 96: 094019 (2017), arXiv:1707.03107
    [37] J.-W. Chen, T. Ishikawa, L. Jin et al, (2017), arXiv: 1710.01089
    [38] J.-W. Chen, T. Ishikawa, L. Jin et al, (2017), arXiv: 1711.07858
    [39] H.-n. Li, Phys. Rev. D, 94: 074036 (2016), arXiv:1602.07575
    [40] C. Monahan and K. Orginos, JHEP, 03: 116 (2017), arXiv:1612.01584
    [41] A. Radyushkin, Phys. Lett. B, 767: 314 (2017), arXiv:1612.05170
    [42] G. C. Rossi and M. Testa, Phys. Rev. D, 96: 014507 (2017), arXiv:1706.04428
    [43] C. E. Carlson and M. Freid, Phys. Rev. D, 95: 094504 (2017), arXiv:1702.05775
    [44] X. Ji, J.-H. Zhang, and Y. Zhao, Nucl. Phys. B, 924: 366 (2017), arXiv:1706.07416
    [45] J.-W. Chen, L. Jin, H.-W. Lin et al, (2018), arXiv: 1803.04393
    [46] C. Alexandrou, K. Cichy, M. Constantinou et al, (2018), arXiv: 1803.02685
    [47] L. Gamberg, Z.-B. Kang, I. Vitev et al, Phys. Lett. B, 743: 112 (2015), arXiv:1412.3401
    [48] S.-i. Nam, Mod. Phys. Lett. A, 32: 1750218 (2017), arXiv:1704.03824
    [49] W. Broniowski and E. Ruiz Arriola, Phys. Lett. B, 773: 385 (2017), arXiv:1707.09588
    [50] Y. Jia, S. Liang, L. Li et al, JHEP, 11: 151 (2017), arXiv:1708.09379
    [51] T. J. Hobbs, Phys. Rev. D, 97: 054028 (2018), arXiv:1708.05463
    [52] Y. Jia and X. Xiong, Phys. Rev. D, 94: 094005 (2016), arXiv:1511.04430
    [53] J.-W. Chen, L. Jin, H.-W. Lin et al, (2018), arXiv: 1804.01483
    [54] K. Orginos, A. Radyushkin, J. Karpie et al, Phys. Rev. D, 96: 094503 (2017), arXiv:1706.05373
    [55] A. Radyushkin, (2018), arXiv: 1801.02427
    [56] J.-H. Zhang, J.-W. Chen, and C. Monahan, (2018), arXiv: 1801.03023
    [57] B. U. Musch, P. Hagler, J. W. Negele et al, Phys. Rev. D, 83: 094507 (2011), arXiv:1011.1213
    [58] T. Ishikawa, EPJ Web Conf., 175: 06028 (2018), arXiv:1802.02333 doi: 10.1051/epjconf/201817506028
    [59] G. S. Bali, B. Lang, B. U. Musch et al, Phys. Rev. D, 93: 094515 (2016), arXiv:1602.05525
    [60] C. Gattringer and C. B. Lang, Lect. Notes Phys., 788: 1 (2010) doi: 10.1007/978-3-642-01850-3
    [61] R. Sommer, in Modern perspectives in lattice QCD: Quantum field theory and high performance computing. Proceedings, International School, 93rd Session, Les Houches, France, August 3-28, 2009(2010), pp. 517-590, 1008.0710, URL http://inspirehep.net/record/864434/files/arXiv:1008.0710.pdf
    [62] R. Sommer, Nucl. Part. Phys. Proc., 261-262: 338 (2015), arXiv:1501.03060 doi: 10.1016/j.nuclphysbps.2015.03.022
    [63] D. Becirevic and J. Reyes, Nucl. Phys. Proc. Suppl., 129: 435 (2004)
    [64] B. Blossier, Phys. Rev. D, 76: 114513 (2007), arXiv:0705.0283
    [65] T. Ishikawa, Y. Aoki, J. M. Flynn et al, JHEP, 05: 040 (2011), arXiv:1101.1072
    [66] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B, 259: 572 (1985)
    [67] G. Heatlie, G. Martinelli, C. Pittori et al, Nucl. Phys. B, 352: 266 (1991)
    [68] A. Borrelli, C. Pittori, R. Frezzotti et al, Nucl. Phys. B, 409: 382 (1993)
  • 加载中

Cited by

1. Han, X.-Y., Hua, J., Ji, X. et al. Calculation of heavy meson light-cone distribution amplitudes from lattice QCD[J]. Physical Review D, 2025, 111(3): 034503. doi: 10.1103/PhysRevD.111.034503
2. Cloët, I., Gao, X., Mukherjee, S. et al. Lattice QCD calculation of x-dependent meson distribution amplitudes at physical pion mass with threshold logarithm resummation[J]. Physical Review D, 2024, 110(11): 114502. doi: 10.1103/PhysRevD.110.114502
3. Baker, E., Bollweg, D., Boyle, P. et al. Lattice QCD calculation of the pion distribution amplitude with domain wall fermions at physical pion mass[J]. Journal of High Energy Physics, 2024, 2024(7): 211. doi: 10.1007/JHEP07(2024)211
4. Spanoudes, G., Constantinou, M., Panagopoulos, H. Renormalization of asymmetric staple-shaped Wilson-line operators in lattice and continuum perturbation theory[J]. Physical Review D, 2024, 109(11): 114501. doi: 10.1103/PhysRevD.109.114501
5. Chu, M.-H., He, J.-C., Hua, J. et al. Transverse-momentum-dependent wave functions of the pion from lattice QCD[J]. Physical Review D, 2024, 109(9): L091503. doi: 10.1103/PhysRevD.109.L091503
6. Bhattacharya, S., Cichy, K., Constantinou, M. et al. Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Axial-vector case[J]. Physical Review D, 2024, 109(3): 034508. doi: 10.1103/PhysRevD.109.034508
7. Hu, S.-M., Wang, W., Xu, J. et al. Accessing the subleading-twist B -meson light-cone distribution amplitude with large-momentum effective theory[J]. Physical Review D, 2024, 109(3): 034001. doi: 10.1103/PhysRevD.109.034001
8. Alexandrou, C., Bacchio, S., Cichy, K. et al. Nonperturbative renormalization of asymmetric staple-shaped operators in twisted mass lattice QCD[J]. Physical Review D, 2023, 108(11): 114503. doi: 10.1103/PhysRevD.108.114503
9. Han, C., Su, Y., Wang, W. et al. Hybrid renormalization for quasi distribution amplitudes of a light baryon[J]. Journal of High Energy Physics, 2023, 2023(12): 44. doi: 10.1007/JHEP12(2023)044
10. Alexandrou, C., Cichy, K., Constantinou, M. et al. Study of quasi-beam function in twisted mass lattice QCD[J]. Proceedings of Science, 2023.
11. Gao, X., Hanlon, A.D., Holligan, J. et al. Unpolarized proton PDF at NNLO from lattice QCD with physical quark masses[J]. Physical Review D, 2023, 107(7): 074509. doi: 10.1103/PhysRevD.107.074509
12. Edwards, R., Egerer, C., Karpie, J. et al. Non-singlet quark helicity PDFs of the nucleon from pseudo-distributions[J]. Journal of High Energy Physics, 2023, 2023(3): 86. doi: 10.1007/JHEP03(2023)086
13. Gao, X., Hanlon, A.D., Karthik, N. et al. Continuum-extrapolated NNLO valence PDF of the pion at the physical point[J]. Physical Review D, 2022, 106(11): 114510. doi: 10.1103/PhysRevD.106.114510
14. Bhattacharya, S., Cichy, K., Constantinou, M. et al. Generalized parton distributions from lattice QCD with asymmetric momentum transfer: Unpolarized quarks[J]. Physical Review D, 2022, 106(11): 114512. doi: 10.1103/PhysRevD.106.114512
15. Bhat, M., Chomicki, W., Cichy, K. et al. Continuum limit of parton distribution functions from the pseudodistribution approach on the lattice[J]. Physical Review D, 2022, 106(5): 054504. doi: 10.1103/PhysRevD.106.054504
16. Zhang, J.. Towards precision calculation of partonic structure of hadrons from lattice QCD[J]. Proceedings of Science, 2022. doi: 10.22323/1.396.0297
17. Chou, C.-Y., Chen, J.-W. One-loop hybrid renormalization matching kernels for quasiparton distributions[J]. Physical Review D, 2022, 106(1): 014507. doi: 10.1103/PhysRevD.106.014507
18. Ji, Y., Zhang, J.-H., Zhao, S. et al. Renormalization and mixing of staple-shaped Wilson line operators on the lattice revisited[J]. Physical Review D, 2021, 104(9): 094510. doi: 10.1103/PhysRevD.104.094510
19. Karpie, J., Orginos, K., Radyushkin, A. et al. The continuum and leading twist limits of parton distribution functions in lattice QCD[J]. Journal of High Energy Physics, 2021, 2021(11): 24. doi: 10.1007/JHEP11(2021)024
20. Constantinou, M., Courtoy, A., Ebert, M.A. et al. Parton distributions and lattice-QCD calculations: Toward 3D structure[J]. Progress in Particle and Nuclear Physics, 2021. doi: 10.1016/j.ppnp.2021.103908
21. Liu, W.-Y., Chen, J.-W. Chiral perturbation for large momentum effective field theory[J]. Physical Review D, 2021, 104(5): 054508. doi: 10.1103/PhysRevD.104.054508
22. Alexandrou, C., Constantinou, M., Hadjiyiannakou, K. et al. Flavor decomposition of the nucleon unpolarized, helicity, and transversity parton distribution functions from lattice QCD simulations[J]. Physical Review D, 2021, 104(5): 054503. doi: 10.1103/PhysRevD.104.054503
23. Ji, X., Liu, Y., Liu, Y.-S. et al. Large-momentum effective theory[J]. Reviews of Modern Physics, 2021, 93(3): 035005. doi: 10.1103/RevModPhys.93.035005
24. Alexandrou, C., Cichy, K., Constantinou, M. et al. Lattice continuum-limit study of nucleon parton quasidistribution functions[J]. Physical Review D, 2021, 103(9): 094512. doi: 10.1103/PhysRevD.103.094512
25. Ji, X., Liu, Y., Schäfer, A. et al. A hybrid renormalization scheme for quasi light-front correlations in large-momentum effective theory[J]. Nuclear Physics B, 2021. doi: 10.1016/j.nuclphysb.2021.115311
26. Lin, H.-W., Chen, J.-W., Fan, Z. et al. Valence-quark distribution of the kaon and pion from lattice QCD[J]. Physical Review D, 2021, 103(1): 014516. doi: 10.1103/PhysRevD.103.014516
27. Bhattacharya, S., Cichy, K., Constantinou, M. et al. The role of zero-mode contributions in the matching for the twist-3 PDFs e (x) and hL (x)[J]. Physical Review D, 2020, 102(11): 114025. doi: 10.1103/PhysRevD.102.114025
28. Zhang, R., Honkala, C., Lin, H.-W. et al. Pion and kaon distribution amplitudes in the continuum limit[J]. Physical Review D, 2020, 102(9): 094519. doi: 10.1103/PhysRevD.102.094519
29. Gao, X., Jin, L., Kallidonis, C. et al. Valence parton distribution of the pion from lattice QCD: Approaching the continuum limit[J]. Physical Review D, 2020, 102(9): 094513. doi: 10.1103/PhysRevD.102.094513
30. Fan, Z., Gao, X., Li, R. et al. Isovector parton distribution functions of the proton on a superfine lattice[J]. Physical Review D, 2020, 102(7): e074504. doi: 10.1103/PhysRevD.102.074504
31. Chen, L.-B., Wang, W., Zhu, R. Master integrals for two-loop QCD corrections to quark quasi PDFs[J]. Journal of High Energy Physics, 2020, 2020(10): 79. doi: 10.1007/JHEP10(2020)079
32. Bhattacharya, S., Cocuzza, C., Metz, A. Exploring twist-2 GPDs through quasidistributions in a diquark spectator model[J]. Physical Review D, 2020, 102(5): 054021. doi: 10.1103/PhysRevD.102.054021
33. Bhattacharya, S., Cichy, K., Constantinou, M. et al. One-loop matching for the twist-3 parton distribution gT (x)[J]. Physical Review D, 2020, 102(3): 034005. doi: 10.1103/PhysRevD.102.034005
34. Green, J.R., Jansen, K., Steffens, F. Improvement, generalization, and scheme conversion of Wilson-line operators on the lattice in the auxiliary field approach[J]. Physical Review D, 2020, 101(7): 074509. doi: 10.1103/PhysRevD.101.074509
35. Shanahan, P., Wagman, M.L., Zhao, Y. Nonperturbative renormalization of staple-shaped Wilson line operators in lattice QCD[J]. Physical Review D, 2020, 101(7): 074505. doi: 10.1103/PhysRevD.101.074505
36. Ebert, M.A., Stewart, I.W., Zhao, Y. Renormalization and matching for the Collins-Soper kernel from lattice QCD[J]. Journal of High Energy Physics, 2020, 2020(3): 99. doi: 10.1007/JHEP03(2020)099
37. Zhang, R., Fan, Z., Li, R. et al. Machine-learning prediction for quasiparton distribution function matrix elements[J]. Physical Review D, 2020, 101(3): 034516. doi: 10.1103/PhysRevD.101.034516

Figures(1) / Tables(4)

Get Citation
Jiunn-Wei Chen, Tomomi Ishikawa, Luchang Jin, Huey-Wen Lin, Jian-Hui Zhang and Yong Zhao. Symmetry properties of nonlocal quark bilinear operators on a Lattice (LP3 Collaboration)[J]. Chinese Physics C, 2019, 43(10): 103101. doi: 10.1088/1674-1137/43/10/103101
Jiunn-Wei Chen, Tomomi Ishikawa, Luchang Jin, Huey-Wen Lin, Jian-Hui Zhang and Yong Zhao. Symmetry properties of nonlocal quark bilinear operators on a Lattice (LP3 Collaboration)[J]. Chinese Physics C, 2019, 43(10): 103101.  doi: 10.1088/1674-1137/43/10/103101 shu
Milestone
Received: 2019-05-01
Revised: 2019-07-09
Article Metric

Article Views(2818)
PDF Downloads(24)
Cited by(37)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Symmetry properties of nonlocal quark bilinear operators on a Lattice (LP3 Collaboration)

    Corresponding author: Jiunn-Wei Chen, jwc@phys.ntu.edu.tw
    Corresponding author: Tomomi Ishikawa, tomomi.ik@gmail.com
    Corresponding author: Jian-Hui Zhang, jianhui.zhang@ur.de
  • 1. Department of Physics, Center for Theoretical Physics, and Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 106
  • 2. Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
  • 3. T. D. Lee Institute, Shanghai Jiao Tong University, Shanghai, 200240
  • 4. Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046
  • 5. RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973
  • 6. Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824
  • 7. Department of Computational Mathematics, Michigan State University, East Lansing, MI 48824
  • 8. Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg

Abstract: Using symmetry properties, we determine the mixing pattern of a class of nonlocal quark bilinear operators containing a straight Wilson line along a spatial direction. We confirm the previous study that mixing among the lowest dimensional operators, which have a mass dimension equal to three, can occur if chiral symmetry is broken in the lattice action. For higher dimensional operators, we find that the dimension-three operators will always mix with dimension-four operators, even if chiral symmetry is preserved. Also, the number of dimension-four operators involved in the mixing is large, and hence it is impractical to remove the mixing by the improvement procedure. Our result is important for determining the Bjorken-x dependence of the parton distribution functions using the quasi-distribution method on a Euclidean lattice. The requirement of using large hadron momentum in this approach makes the control of errors from dimension-four operators even more important.

    HTML

    1.   Introduction
    • Controlling the systematic uncertainties is critical for obtaining meaningful results in lattice QCD. For example, the nonperturbative renormalization method of the Rome-Southampton collaboration [1] has been widely used to convert from the lattice scheme to continuum schemes, avoiding the introduction of errors from the slowly converging lattice perturbation theory. Another example is the use of Symanzik improvement [2, 3] to systematically reduce discretization errors due to nonzero lattice spacing a. Since it is crucial to understand the mixing patterns of the operators involved, understanding the symmetries of a problem provides a powerful nonperturbative method. Symmetries could protect certain mixings from happening, while those not protected by symmetries could occur under quantum corrections. Although symmetry considerations do not provide a quantitative analysis of the mixing, they do provide a complete mixing pattern among operators in the problem.

      In this work, we use the symmetries of lattice QCD to analyze the mixing pattern of a class of nonlocal quark bilinear operators defined in Eq. (27). Their renormalization in the continuum has been discussed since the 1980s [4, 5]. In recent years, there has been renewed interest in the renormalization of these operators in the context of methods for calculating the Bjorken-x dependence of the hadron parton distribution functions (PDFs) using the lattice QCD, the quasi-PDF method [6] and its variations [7, 8]. For recent progress in this area, see Refs. [956]. A special feature of these nonlocal quark bilinears is that the Wilson line connecting the quark fields receives power-divergent contributions. A nonperturbative subtraction of the power divergence was proposed in Refs. [33, 34, 57] by recasting the Wilson line as a heavy quark field in the auxiliary field approach [4, 5] such that the counterterm needed to subtract the power divergence is just the counterterm for heavy quark mass renormalization. The renormalization of the nonlocal quark bilinears in the continuum was studied in Refs. [19, 35, 36] , on a lattice in Ref. [27], and in nonperturbative renormalization schemes in [14, 15].

      A lattice theory has fewer symmetries than its corresponding continuum theory. This implies that there will be more mixing among the operators in a lattice theory than in the corresponding continuum theory. For example, a pioneering one-loop lattice perturbation theory calculation using Wilson fermions showed that the breaking of chiral symmetry for the Wilson fermions induces the mixing shown in Eq. (34) [26]. In this work, instead of performing explicit computations, we use symmetries to systematically study the mixing patterns among nonlocal quark bilinears (part of this work was reported in [15, 58]). We study not only the mixing among the lowest dimensional nonlocal quark bilinears of mass dimension-three as was done in Ref. [26], but also the mixing between dimension-three and dimension-four operators, which cannot be avoided even if chiral symmetry is preserved. This feature is confirmed by the computation of an example one-loop diagram.

      Our study is particularly relevant to the quasi-PDF approach, which receives power corrections in inverse powers of hadron momentum. It is important to find the window where hadron momentum is large enough to suppress power corrections (good progress was made using momentum smearing in [13, 59]), but small enough that mixing with dimension-four operators is under control. In the following, we first review the symmetry analysis of local quark bilinear operators, and then move to the nonlocal ones.

    2.   Review of local quark bilinear operators
    • If the θ term is neglected, the lattice action exhibits important discrete symmetries: the action is invariant under discrete parity (P), time reversal (T) and charge conjugation (C) transformations (see e.g. Ref. [60]). Chiral symmetry, which is a continuous symmetry, however, might be broken after the fermion fields are discretized. In this section, we review the symmetry properties for a specific set of local quark bilinear operators under these transformations. We then extend the analysis to nonlocal quark bilinear operators in the next section. The importance of these analyses is that if two operators transform differently, then the symmetries will protect them from mixing with each other under quantum corrections to all orders in the coupling. Operators not protected from mixing by the symmetries will, in general, mix.

    • 2.1.   P, T, C and axial transformations

    • In this subsection, we summarize the transformations of fields under P, T, C and the axial transformation (the vector transformation in chiral symmetry is conserved for all operators that we study). We work in the Euclidean spacetime with coordinates (x,y,z,τ)= (1,2,3,4) throughout this paper. Gamma matrices are chosen to be Hermitian: γμ=γμ, and γ5=γ1γ2γ3γ4.

      Since there is no distinction between time and space in the Euclidean space, the parity transformation, denoted Pμ with μ{1,2,3,4}, can be defined with respect to any direction.

      ψ(x)Pμψ(x)Pμ=γμψ(Pμ(x)),

      (1)

      ¯ψ(x)Pμ¯ψ(x)Pμ=¯ψ(Pμ(x))γμ,

      (2)

      Uνμ(x)PμUνμ(x)Pμ=Uνμ(Pμ(x)ˆν),

      (3)

      Uμ(x)PμUμ(x)Pμ=Uμ(Pμ(x)),

      (4)

      where Pμ(x) is the vector x with the flipped sign, except for the μ-direction.

      Similarly, the time reversal transformation, denoted as Tμ, can be generalized in any direction in the Euclidean space.

      ψ(x)Tμψ(x)Tμ=γμγ5ψ(Tμ(x)),

      (5)

      ¯ψ(x)Tμ¯ψ(x)Tμ=¯ψ(Tμ(x))γ5γμ,

      (6)

      Uμ(x)TμUμ(x)Tμ=Uμ(Tμ(x)ˆμ),

      (7)

      Uνμ(x)TμUνμ(x)Tμ=Uνμ(Tμ(x)),

      (8)

      where Tμ(x) is the vector x with the flipped sign in the μ-direction.

      Charge conjugation C transforms particles into antiparticles,

      ψ(x)Cψ(x)C=C1¯ψ(x),

      (9)

      ¯ψ(x)C¯ψ(x)C=ψ(x)C,

      (10)

      Uμ(x)CUμ(x)C=Uμ(x)=(Uμ(x)),

      (11)

      and

      CγμC1=γμ,Cγ5C1=γ5.

      (12)

      The continuous axial rotation (A) of the fermion fields is

      ψ(x)Aψ(x)=eiαγ5ψ(x),¯ψ(x)A¯ψ(x)=¯ψ(x)eiαγ5,

      (13)

      where α is the x-independent rotation angle of the global transformation. The explicit axial symmetry breaking pattern induced by the quark mass m can be studied by introducing a spurious transformation

      mAeiαγ5meiαγ5,

      (14)

      so that the quark mass term is invariant under this extended axial transformation.

    • 2.2.   Dimension-three local operators

    • We now study the transformation properties of a class of local quark bilinear operators of the form

      OΓ=¯ψ(x)Γψ(x),

      (15)

      with

      Γ{1,γμ,γ5,iγμγ5,σμν},

      (16)

      where σμν=i2[γμ,γν]. Quantum loop effects for these operators are in powers of loga. The Hermitian conjugate is

      (OΓ)=Oγ4Γγ4=G4(Γ)OΓ,

      (17)

      where Gμ(Γ), which has a value of either +1 or 1, satisfies

      γμΓγμ=Gμ(Γ)Γ.

      (18)

      Therefore, depending on Γ, the expectation value of OΓ can be purely real or imaginary.

      Under P, T, and C, the local quark bilinear transforms as

      OΓPμOγμΓγμ,OΓTμOγ5γμΓγμγ5,OΓCO(CΓC1).

      (19)

      OΓ either stays invariant (even, E) or changes sign (odd, O) under a transformation. The results are summarized in Table 1. Operators of different Γ do not mix under renormalization, since they transform differently under Pμ or Tμ. C alone does not protect the operators from mixing with each other.

      Γ=1γμγ5iγμγ5σμν
      Pρ=μEEOOO
      PρμEOOEO(ρ=ν)/E(ρν)
      Tρ=μEOOEO
      TρμEEOOO(ρ=ν)/E(ρν)
      CEOEEO
      AVIVIV

      Table 1.  Properties of the dimension-three local operator OΓ under parity (Pρ), time reversal (Tρ), charge conjugation (C) and axial (A) transformations. E and O stand for even and odd, while I and V stand for invariant and variant under transformations.

      Under an axial rotation (with Eq. (14) included), OΓ is either invariant (I) or variant (V), as shown in Table 1. Some lattice fermions, such as Wilson fermions, break the axial symmetry, but from the above discussion we see that axial symmetry is not essential for protecting OΓ from mixing. Only Pμ or Tμ is needed.

    • 2.3.   Dimension-four local operators

    • For dimension-four, we can further classify the operators into p type and m type operators, which have one more insertion of derivative or quark mass, respectively, compared with the dimension-three operators. Here p denotes a typical momentum in the external state. It is useful to define the covariant derivatives, Dμ and Dμ, acting on a field ϕ(x),

      Dμϕ(x)=12a[Uμ(x)ϕ(x+ˆμa)Uμ(xˆμa)ϕ(xˆμa)],

      (20)

      ϕ(x)Dμ=12a[ϕ(x+ˆμa)Uμ(x)ϕ(xˆμa)Uμ(xˆμa)].

      (21)

      The Euclidean four-dimensional rotational symmetry dictates that p type operators are constructed by inserting D and D into OΓ:

      QΓD=¯ψ(x)ΓDψ(x),QDΓ=¯ψ(x)DΓψ(x),

      (22)

      QDΓ=¯ψ(x)DΓψ(x),QΓD=¯ψ(x)ΓDψ(x).

      (23)

      It can be shown that these operators transform in the same way as OΓ under Pμ and Tμ, while under C,

      QΓD/DΓCQD(CΓC1)/(CΓC1)D,QDΓ/ΓDCQ(CΓC1)D/D(CΓC1),

      (24)

      with the operators D and D transforming into each other. Therefore, it is convenient to define the combinations

      Op(±)Γ=QDΓ±QΓD,Op(±)¯Γ=QΓD±QDΓ,

      (25)

      which are either even or odd under C. The transformation properties of the p type operators are listed in Table 2. By comparing with Table 1, we observe that Pμ, Tμ and C symmetries do not protect OΓ from mixing with Op()Γ/¯Γ, but the axial symmetry does. So, if the lattice theory preserves axial or chiral symmetry, then the dimension-three and p type dimension-four operators studied above will not mix.

      Γ=1γμγ5iγμγ5σμν
      Pρ=μEEOOO
      PρμEOOEO(ρ=ν)/E(ρν)
      Tρ=μEOOEO
      TρμEEOOO(ρ=ν)/E(ρν)
      C(Op(+)Γ/¯Γ)OEOOE
      C(Op()Γ/¯Γ)EOEEO
      AIVIVI

      Table 2.  Transformation properties of the dimension-four p type local operators Op(±)Γ/¯Γ. Notation is the same as in Table 1.

      We now consider the m type operators. The only operator that appears at this order is

      OmΓ=m¯ψ(x)Γψ(x),

      (26)

      which transforms in the same way as OΓ under Pμ, Tμ and C. However, it transforms differently from OΓ under A.

      Therefore, we conclude that if the lattice theory preserves axial or chiral symmetry, then the dimension-three and dimension-four operators (including both the p type and m type operators) studied above will not mix.

    3.   Nonlocal quark bilinear operators
    • Having reviewed the operator-mixing properties of the local quark bilinears, we now apply the analysis to a specific type of nonlocal quark bilinears.

    • 3.1.   Dimension-three nonlocal operators

    • We are interested in the nonlocal quark bilinear operators with quark fields separated by δz in the z-direction:

      OΓ(δz)=¯ψ(x+δz)ΓU3(x+δz;x)ψ(x),

      (27)

      where a straight Wilson line U3 is added such that the operators are gauge invariant. Treating the z-direction differently from the other directions, we write

      Γ{1,γi,γ3,γ5,iγiγ5,iγ3γ5,σi3,ϵijkσjk},

      (28)

      where i,j,k3. These operators receive quantum loop corrections as powers of 1/a and loga [19, 35, 36]. It is important to keep in mind that one cannot take the continuum limit of the matrix elements of these operators.

      Under Pμ and Tμ,

      OΓ(δz)Pl3OγlΓγl(δz),OΓ(δz)P3Oγ3Γγ3(δz),

      (29)

      OΓ(δz)Tl3Oγ5γlΓγlγ5(δz),OΓ(δz)T3Oγ5γ3Γγ3γ5(δz).

      (30)

      The transformations could change the sign of δz, so it is convenient to define

      OΓ±(δz)=12(OΓ(δz)±OΓ(δz)),

      (31)

      whose Hermitian conjugate yields

      (OΓ±(δz))=G4(Γ)OΓ±(δz).

      (32)

      Thus, the expectation value of OΓ±(δz) is either purely real or purely imaginary, depending on Γ. Under C,

      OΓ±(δz)C±O(CΓC1)±(δz).

      (33)

      The transformation properties of OΓ±(δz) are listed in Table 3. We see that Pμ, Tμ and C symmetries cannot protect the mixing between 1 and γ3 or between iγiγ5 and ϵijkσjk operators of dimension-three. This can be summarized as

      Γ=1+/γi+/γ3+/γ5+/iγiγ5+/iγ3γ5+/σi3+/ϵijkσjk+/
      P3EOEOEOOE
      Pl3E/OE/O(l=i)O/EO/EO/E(l=i)E/OO/E(l=i)E/O(l=i)
      O/E(li)E/O(li)E/O(li)O/E(li)
      T3E/OE/OO/EO/EO/EE/OO/EE/O
      Tl3EO(l=i)EOE(l=i)OO(l=i)E(l=i)
      E(li)O(li)E(li)O(li)
      CE/OO/EO/EE/OE/OE/OO/EO/E
      AVIIVIIVV

      Table 3.  Transformation properties of the dimension-three nonlocal operators OΓ±(δz). i,j,k3. Other notation is the same as in Table 1.

      OΓ±(δz)mixes with(1+G3(Γ))Oγ3Γ(δz),

      (34)

      which is consistent with the mixing pattern found using the lattice perturbation theory in Refs. [26, 27]. However, if the lattice theory preserves axial or chiral symmetry, then none of the dimension-three operators will mix with each other.

      The mixing among dimension-three operators of different δz cannot be excluded by symmetries, but diagrammatic analysis excludes this possibility to all orders in the strong coupling constant expansion [35]. The mixing of dimension-three with dimension-four operators of different δz has not been systematically studied yet. However, the one-loop example in Eq. (48) is consistent with no mixing among operators of different δz.

    • 3.2.   Dimension-four nonlocal operators

    • We now extend the discussion for p type and m type local operators to nonlocal ones. We can insert D at any point on the Wilson line. The symmetry properties will not depend on where D is inserted.

      QΓDα(δz,δz)=¯ψ(x+ˆ3δz)U3(x+ˆ3δz;x+ˆ3δz)×ΓDαU3(x+ˆ3δz;x)ψ(x),

      (35)

      QDαΓ(δz,δz)=¯ψ(x+ˆ3δz)U3(x+ˆ3δz;x+ˆ3δz)×DαΓU3(x+ˆ3δz;x)ψ(x),

      (36)

      QΓDα(δz,δz)=¯ψ(x+ˆ3δz)U3(x+ˆ3δz;x+ˆ3δz)×ΓDαU3(x+ˆ3δz;x)ψ(x),

      (37)

      QDαΓ(δz,δz)=¯ψ(x+ˆ3δz)U3(x+ˆ3δz;x+ˆ3δz)×DαΓU3(x+ˆ3δz;x)ψ(x),

      (38)

      where 0δzδz. The z-direction is treated differently by writing α[3,] and D3=γ3D3, and D=μ3γμDμ.

      As in the local quark bilinear case, inserting D and D does not change the transformation properties under Pμ and Tμ. These operators transform in the same way as OΓ(δz). It is useful to define combinations that are even or odd under Pμ and Tμ:

      QΓDα±/DαΓ±(δz,δz)=12(QΓDα/DαΓ(δz,δz)±QΓDα/DαΓ(δz,δz)),

      (39)

      QΓDα±/DαΓ±(δz,δz)=12(QΓDα/DαΓ(δz,δz)±QΓDα/DαΓ(δz,δz)).

      (40)

      Under C, these operators transform as

      QΓDα±/DαΓ±(δz,δz)CQDα(CΓC1)±/(CΓC1)Dα±(δz,δz),

      (41)

      QDαΓ±/ΓDα±(δz,δz)CO(CΓC1)Dα±/Dα(CΓC1)±(δz,δz).

      (42)

      Hence, we define the combinations

      QDα(+)Γ±/¯Γ±(δz,δz)=QDαΓ±/ΓDα±(δz,δz)+QΓDα±/DαΓ±(δz,δz),

      (43)

      QDα()Γ±/¯Γ±(δz,δz)=QDαΓ±/ΓDα±(δz,δz)QΓDα±/DαΓ±(δz,δz),

      (44)

      such that

      QDα(+)Γ±/¯Γ±(δz,δz)CQDα(+)(CΓC1)±/(C¯ΓC1)±(δz,δz),

      (45)

      QDα()Γ±/¯Γ±(δz,δz)C±QDα()(CΓC1)±/(C¯ΓC1)±(δz,δz).

      (46)

      Their properties under Pμ, Tμ and C are listed in Table 4. Comparing with Table 3, we find that Pμ, Tμ and C symmetries do not protect OΓ(δz) from mixing with QDαΓ(δz,δz) or QDαγ3Γ(δz,δz). If the lattice theory preserves axial or chiral symmetry, then the mixing with QDαΓ(δz,δz) is forbidden, but the mixing with QDαγ3Γ(δz,δz) is still allowed. Since the Wilson line can be described as a heavy quark propagator in the auxiliary field approach [19, 27, 35], this is analogous to the static heavy-light system, which has p type discretization errors even if the light quarks respect chiral symmetry. Note that Ref. [58] did not include the operators with δz different from 0 and δz. Since there are many more p type operators now, it makes the nonperturbative improvement program advocated in Ref. [58] much more difficult, and perhaps impractical.

      Γ=1+/γi+/γ3+/γ5+/γiγ5+/γ3γ5+/σi3+/ϵijkσjk+/
      P3EOEOEOOE
      Pl3E/OE/O(l=i)O/EO/EO/E(l=i)E/OO/E(l=i)E/O(l=i)
      O/E(li)E/O(li)E/O(li)O/E(li)
      T3E/OE/OO/EO/EO/EE/OO/EE/O
      Tl3EO(i=l)EOE(l=i)OO(l=i)E(l=i)
      E(li)O(li)E(li)O(li)
      C(QDα(+)Γ±/¯Γ±)O/EE/OE/OO/EO/EO/EE/OE/O
      C(QDα()Γ±/¯Γ±)E/OO/EO/EE/OE/OE/OO/EO/E
      AIVVIVVII

      Table 4.  Transformation properties of the dimension-four p type nonlocal operators QDα(±)Γ±/¯Γ±(δz,δz). i,j,k3. Other notation is the same as in Tab. 1.

      The m type nonlocal bilinear is

      QMΓ(δz)=m¯ψ(x+ˆ3δz)ΓU3(x+ˆ3δz;x)ψ(x).

      (47)

      It has the same transformation properties as OΓ(δz) under Pμ, Tμ and C but is different for the chiral rotation. However, chiral symmetry does not prevent OΓ(δz) from mixing with the m type operator QMγ3Γ(δz).

    • 3.3.   A mixing example in perturbative theory

    • In the previous section, it was shown that Pμ, Tμ, C, and chiral symmetries cannot protect dimension-three nonlocal quark bilinears from mixing with dimension-four operators. This is a distinct feature, different from local quark bilinears in which dimension-three operators are protected from mixing with dimension-four operators. Here, we use the diagram shown in Fig. 1 to demonstrate where the effect comes from. For our purpose, we can simplify the calculation by taking the Feynman gauge and the limit of small external momenta and quark masses, and we work in the continuum limit with appropriate UV and IR regulators imposed implicitly. The one-loop amputated Green function in Fig. 1, Λ1loopΓ,δz(p,p,m), then yields

      Figure 1.  One of the one-loop Feynman diagrams for the nonlocal quark bilinear. p and p are incoming and outgoing external momenta, respectively.

      Λ1loopΓ,δz(p,p,m)eip3δz=Γ+kδμνδABk2(igγμTA)×1i(+p)+mΓeik3δz1i(+p)+m(igγνTB)=(1+g2GFAΓ,δz)Γ+g2GFAmΓ,δz(1+G3(Γ))mγ3Γ+g2GFAp3Γ,δzi{(1+G3(Γ))(p3γ3Γγ3Γp3)+(1G3(Γ))(p3γ3Γ+γ3Γp3)}+g2GFApΓ,δzi{(1+G3(Γ))(pγ3Γγ3Γp)+(1G3(Γ))(pγ3Γ+γ3Γp)}+g2GFAp¯Γ,δzi{(1+G3(Γ))(γ3Γppγ3Γ)+(1G3(Γ))(γ3Γp+pγ3Γ)}+O(p2,p2,pp,pm,pm,m2),

      (48)

      where the coefficients are

      AΓ,δz=kcos(k3δz)(k2)3H(Γ)3((H(Γ)G3(Γ))k2+(H(Γ)+4G3(Γ))k23),

      (49)

      AmΓ,δz=ksin(k3δz)k3(k2)3(H(Γ)+2G3(Γ)),

      (50)

      Ap3Γ,δz=ksin(k3δz)k3(k2)4H(Γ)6((2H(Γ)+5G3(Γ))k2+2(H(Γ)4G3(Γ))k23),

      (51)

      ApΓ,δz=ksin(k3δz)k3(k2)4G3(Γ)6((H(Γ)6G3(Γ))k2+2H(Γ)k23),

      (52)

      Ap¯Γ,δz=ksin(k3δz)k3(k2)413((H(Γ)+3G3(Γ))k2+H(Γ)k23),

      (53)

      and where H(Γ)=4μ=1Gμ(Γ). It is easy to see that when δz=0 (corresponding to a local quark bilinear), the mixings with all dimension-four operators vanish, but when δz0 (corresponding to a nonlocal quark bilinear), the mixing with dimension-four operators appears even though the theory has P, T, C, and chiral symmetries.

    4.   Summary
    • We have used the symmetry properties of nonlocal quark bilinear operators under parity, time reversal and chiral or axial transformations to study the possible mixing among these operators. Below, we summarize our findings.

      1) If the lattice theory preserves chiral symmetry, then the dimension-three nonlocal quark bilinear operators OΓ±(δz) of Eq. (31) are protected from mixing with each other, but they are not protected from mixing with the dimension-four operators of Eqs. (43), (44) and (47) with all possible values of δz satisfying 0δzδz:

      OpΓ(δz,δz)=(1+G3(Γ))QDα()γ3Γ(δz,δz)+(1G3(Γ))ODα(+)γ3Γ(δz,δz),

      (54)

      Op¯Γ(δz,δz)=(1+G3(Γ))QDα()¯γ3Γ(δz,δz)+(1G3(Γ))ODα(+)¯γ3Γ(δz,δz),

      (55)

      OmΓ(δz)=(1+G3(Γ))QMγ3Γ(δz),

      (56)

      where Gμ is defined in Eq. (18). This mixing pattern is confirmed by an example calculation for a one-loop diagram, as shown in Sec. 3.3. Since there are many operators in Eqs. (54)–(56), it is impractical to remove the mixing using the improvement procedure.

      2) If the lattice theory breaks chiral symmetry, then the dimension-three nonlocal quark bilinear OΓ±(δz) mixes with

      (1+G3(Γ))Oγ3Γ±(δz).

      (57)

      The operator OΓ±(δz) not only mixes with all the operators in Eqs. (54)–(56), but also with QDα()Γ(δz,δz), QDα()¯Γ(δz,δz) and QMΓ(δz) for all possible values of δz satisfying 0δzδz.

      This study is particularly relevant for the quasi-PDF approach, which receives power corrections in inverse powers of hadron momentum. It is important to find a window where hadron momentum is large enough to suppress power corrections, but at the same time the mixing with p type dimension-four operators is under control. For future work, in light of the similarity between the Wilson line and the heavy quark propagator, it would be valuable to apply techniques developed for the heavy quark effective field theory on the lattice [61, 62] and the associated treatments to improve lattice artifacts [6368].

Reference (68)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return