-
The detailed theoretical formulae of CDFT and 5DCH have been presented in Refs. [33, 34, 39, 40]. Here, the framework of 5DCH and CDFT will be present briefly for completeness. The 5DCH is expressed by the two intrinsic deformation parameters
$ \beta $ and$ \gamma $ , as well as three Euler angles$ (\phi,\theta,\psi)\equiv\Omega $ defining the orientation of three intrinsic principal axes with respect to the laboratory frame. The collective Hamiltonian of 5DCH can be written as [33, 34],$ \hat{H}_{\rm{coll}}(\beta,\gamma) = \hat{T}_{\rm{vib}}(\beta,\gamma) + \hat{T}_{\rm{rot}}(\beta,\gamma,\Omega) + V_{\rm{coll}}(\beta,\gamma), $
(1) which includes a vibrational kinetic energy term,
$ \begin{split} {{\hat T}_{{\rm{vib}}}}(\beta ,\gamma ) \!=\!& -\! \frac{{{\hbar ^2}}}{{2\sqrt {\omega r} }}\!\!\left\{ \frac{1}{{{\beta ^4}}}\!\!\left[\frac{\partial }{{\partial \beta }}\!\!\sqrt {\frac{r}{\omega }} {\beta ^4}{B_{\gamma \gamma }}\frac{\partial }{{\partial \beta }}\! -\! \frac{\partial }{{\partial \beta }}\!\!\sqrt {\frac{r}{\omega }} {\beta ^3}{B_{\beta \gamma }}\frac{\partial }{{\partial \gamma }}\right]\right.\\& + \frac{1}{{\beta \sin 3\gamma }}\left[ - \frac{\partial }{{\partial \gamma }}\sqrt {\frac{r}{\omega }} \sin 3\gamma {B_{\beta \gamma }}\frac{\partial }{{\partial \beta }}\right. \\&\left.\left.+ \frac{1}{\beta }\frac{\partial }{{\partial \gamma }}\sqrt {\frac{r}{\omega }} \sin 3\gamma {B_{\beta \beta }}\frac{\partial }{{\partial \gamma }}\right]\right\} , \end{split} $
(2) a rotational kinetic energy term,
$ \hat{T}_{\rm{rot}} = \frac{1}{2}\sum_{k = 1}^3\frac{\hat{J}^2_k}{{\cal I}_k}, $
(3) and a collective potential
$ V_{\rm{coll}}(\beta,\gamma) $ . The operator$ \hat{J}_k $ represents the total angular momentum components in the body-fixed frame. The moment of inertia$ {\cal I}_k $ and mass parameters$ B_{\beta\beta}, B_{\beta\gamma}, B_{\gamma\gamma} $ depend on the quadrupole deformation parameters$ \beta $ and$ \gamma $ . Two additional quantities r and$ \omega $ in$ \hat{T}_{\rm{vib}}(\beta,\gamma) $ are used to determine the volume element in the collective space and their explicit expressions are provided in Refs. [33, 34]. The Hamiltonian in Eq. (1) can be diagonalized by the complete set of basis in Ref. [33]; thus, the eigenvalues and corresponding eigenfunctions can be obtained.In the framework of the CDFT-based 5DCH approach, all the collective parameters including the collective potential
$ V_{\rm{coll}} $ , the moments of inertia$ {\cal I}_k $ , and mass parameters$ B_{\beta\beta}, B_{\beta\gamma}, B_{\gamma\gamma} $ are determined by the microscopic CDFT calculations.Within the point-coupling CDFT, the unified and self-consistent treatment of mean fields and pairing correlations can be realized by solving the following RHB equation [39],
$ \left( {\begin{array}{*{20}{c}} {{{\hat h}_{\rm D}} - \lambda }&{\hat \Delta }\\ { - {{\hat \Delta }^ * }}&{ - {{\hat h}^ * } + \lambda } \end{array}} \right)\left( {\begin{array}{*{20}{c}} {{U_k}}\\ {{V_k}} \end{array}} \right) = {E_k}\left( {\begin{array}{*{20}{c}} {{U_k}}\\ {{V_k}} \end{array}} \right),$
(4) where
$ \hat{h}_{\rm D} = -{\rm i}\mathit{{\alpha}}\cdotp\mathit{{\nabla}} + \beta(m+S) + V $
(5) is the single-nucleon Dirac Hamiltonian.
$ U_k $ and$ V_k $ are the quasiparticle wavefunctions, and$ E_k $ is the corresponding quasiparticle energies. The scalar and vector mean fields in Eq. (5) are given by$ \begin{split} S =& {\alpha _S}{\rho _S} + {\beta _S}\rho _S^2 + {\gamma _S}\rho _S^3 + {\delta _S}\Delta {\rho _S},\\ V =& {\alpha _V}{\rho _V} \!+\! {\gamma _V}{({\rho _V})^3} \!+\! {\delta _V}\Delta {\rho _V} \!+\! {\tau _3}{\alpha _{TV}}{\rho _{TV}} \!+\! {\tau _3}{\delta _{TV}}\Delta {\rho _{TV}} \!+\! e{A^0}, \end{split}$
(6) where
$ eA^0 $ is the electromagnetic field and the densities$ \rho_S, \rho_V $ , and$ \rho_{TV} $ can be expressed in terms of quasiparticle wavefunctions$ V_k $ as$ \begin{split} {\rho _S} = \sum\limits_{k > 0} {V_k^\dagger } {\gamma ^0}{V_k},\quad {\rho _V} = \sum\limits_{k > 0} {V_k^\dagger } {V_k},\quad {\rho _{TV}} = \sum\limits_{k > 0} {V_k^\dagger } \vec \tau {V_k}, \end{split}$
(7) where the sum over
$ k>0 $ corresponds to the “no-sea approximation” [39]. The matrix element of pairing field$ \hat{\Delta} $ can be written in the form,$ \Delta_{ab} = \frac{1}{2}\sum_{cd}\langle ab|V^{pp}|cd\rangle_a\kappa_{cd}. $
(8) Here,
$ \kappa = V^\ast U^T $ is the pairing tensor, and$ V^{pp} $ is the pairing force for which a finite range separable pairing force [41] is adopted in the present work.By solving Eq. (4) iteratively, the total energy in the laboratory can be obtained,
$ \begin{split} E_{\rm{tot}} =& \int {\rm d}^3r\sum_{k>0}V^\dagger_k[\mathit{{\alpha}}\cdotp\mathit{{p}}+\beta m]V_k\\ &+ \int {\rm d}^3r\biggl\{\frac{1}{2}\alpha_S\rho_S^2+ \frac{1}{3}\beta_S\rho_S^3+\frac{1}{4}\gamma_S\rho^4_S+\frac{1}{2}\delta_S\rho_S\Delta\rho_S\\ &+\frac{1}{2}\alpha_V\rho_V^2+\frac{1}{2}\alpha_{TV}\rho_{TV}^2+\frac{1}{4}\gamma_V\rho_V^4+\frac{1}{2}\delta_V\rho_V\Delta\rho_V \\& +\frac{1}{2}\delta_{TV}\rho_{TV}\Delta\rho_{TV}\}.\end{split} $
(9) The map of the potential energy surface as functions of quadrupole deformation parameters
$ \beta $ and$ \gamma $ can be obtained by constraining the axial and triaxial mass quadrupole moments. As shown in Refs. [33, 34], the quadratic constraint method uses an unrestricted variation of the function$ \langle H\rangle + \sum_{\mu = 0}^2C_{2\mu}(\langle\hat{Q}_{2\mu}\rangle-q_{2\mu})^2, $
(10) where
$ \langle H\rangle $ is the total energy and$ \langle\hat{Q}_{2\mu}\rangle $ the expectation value of the following mass quadrupole operator,$ \hat{Q}_{20} = 2z^2-x^2-y^2,\quad \hat{Q}_{22} = x^2-y^2. $
(11) Here,
$ q_{2\mu} $ represents the desired values of the quadrupole moments, and$ C_{2\mu} $ is the corresponding stiffness constant [42].
Nuclear chart in covariant density functional theory with dynamic correlations: From oxygen to tin
- Received Date: 2019-10-28
- Available Online: 2020-03-01
Abstract: Nuclear masses of even-even nuclei with the proton number