-
The interior of the super-dense star is assumed to be described by the line element
$ {\rm d}s^2 = {\rm e}^{\nu(r)}{\rm d}t^2 - {\rm e}^{\lambda(r)}{\rm d}r^2 - r^2({\rm d}\theta^2 + \sin^2{\theta} \; {\rm d}\phi^2). $
(1) For our model, the energy-momentum tensor for the stellar fluid is
$ T_{\alpha \beta} = (\rho+p_t)v_\alpha v_\beta-p_t g_{\alpha \beta}+(p_r-p_t) \chi_\alpha \chi_\beta. $
(2) Here, all the symbols have usual meanings with
$ v_\alpha v^\alpha = -1 = -\chi_\alpha \chi^\alpha \; \; {\rm{and}}\; \; v_\alpha \chi^\alpha = 0 $ .The Einstein field equations for the line element (1) are
$ 8\pi \rho = \frac{1 - {\rm e}^{-\lambda}}{r^2} + \frac{\lambda'{\rm e}^{-\lambda}}{r} , $
(3) $ 8\pi p_r = \frac{\nu' {\rm e}^{-\lambda}}{r} - \frac{1 - {\rm e}^{-\lambda}}{r^2} , $
(4) $ 8\pi p_t = \frac{{\rm e}^{-\lambda}}{4}\left[2\nu'' + {\nu'}^2 - \nu'\lambda' + \frac{2(\nu'-\lambda')}{r}\right], $
(5) where primes (' and '') denote the first and second derivatives w.r.t. the radial coordinate
$ r $ . We use the geometrized units$ G = c = 1 $ throughout the study. Using Eq. (4) and (5), we get$ \Delta = 8\pi (p_t-p_r) \\ = {\rm e}^{-\lambda}\left[{\nu'' \over 2}-{\lambda' \nu' \over 4}+{\nu'^2 \over 4}-{\nu'+\lambda' \over 2r}+{{\rm e}^\lambda-1 \over r^2}\right]. $
(6) To solve Eqs. (3)–(5), we adopted the method of embedding class one, where
$ {\rm e}^\nu $ and$ {\rm e}^\lambda $ are linked via the Karmarkar condition [51] as$ {\lambda' \nu' \over 1-{\rm e}^\lambda} = \lambda' \nu'-2(\nu''+\nu'^2)+\nu'^2. $
(7) The solutions of Eq. (7) are of class one so long as they satisfy the Pandey-Sharma condition [52]. Upon integrating, we obtain
$ {\rm e}^\nu = \left( A+B \int \sqrt{{\rm e}^\lambda-1} \; {\rm d}r \right)^2. $
(8) Using the reduced form of Karmarkar condition (8), the expression of anisotropy given in (6) can be reduced to a simpler form [53] as,
$ \Delta = {\nu' \over 4{\rm e}^\lambda}\left[{2\over r}-{\lambda' \over {\rm e}^\lambda-1}\right]\; \left[{\nu' {\rm e}^\nu \over 2rB^2}-1\right]. $
(9) For the isotropic case, the first solution
$ \nu = 0 $ or$ \nu = {\rm const}. $ and$ {\rm e}^\lambda = 1 $ is not a physically relevant solution. The second solution can be found by equating the second factor of Eq. (9), i.e.,$ {2\over r}-{\lambda' \over {\rm e}^\lambda-1} = 0 $
(10) and the solution is found as
$ {\rm e}^{-\lambda} = 1-cr^2 . $
(11) Using Eq. (11) in Eq. (8), we obtain
$ {\rm e}^\nu = \left(A-{B \over \sqrt{c}} \sqrt{1-cr^2}\right)^2. $
(12) This solution is the well-known interior Schwarzschild's uniform density model (
$ c $ is constant of integration). If the the third factor in (9) vanishes, i.e.,$ {\nu' {\rm e}^\nu \over 2rB^2}-1 = 0, $
(13) then the corresponding solution is
$ {\rm e}^{\nu} = A+B r^2 \; \; {\rm{and}} \; \; {\rm e}^{\lambda} = {A+2Br^2 \over A+Br^2}. $
(14) This is the Kohler-Chao solution with boundary at infinity. Both the solutions are physically irrelevant from astrophysical points of view, as one leads to the constant density model, and the other yields the infinite boundary model. With the inclusion of net electric charge and anisotropy, one can generate many physically inspired solutions.
-
In this model, we assume the following metric potential
$ g_{rr} $ consisting of a class of hyperbolic function$ {\rm e}^{\lambda} = 1+ a r^2 \bigg\{1+ \cosh \left(b r^2+c\right)\bigg\}^n. $
(15) In the above equation the constant parameters
$ a,\; b $ , and$ c $ are positive, and$ n $ should be a negative integer or otherwise the physical values are complex except density. We choose$ {\rm e}^{\lambda(r)} $ such that$ {\rm e}^{\lambda(0)} = 1 $ , which infers that the tangent three space is flat at the center, and the Einstein field equations can be solved for a physically acceptable solution.The metric potential
$ g_{tt} $ is found using Eq. (7) and given by$ {\rm e}^{\nu} = \left(A-\frac{ f(r) B \sqrt{a \left[\cosh \left(b r^2+c\right)+1)\right]^n}}{b (n+1) \sqrt{2-2 \cosh \left(b r^2+c\right)}}\right)^2, $
(16) where
$ A $ and$ B $ are constants of integration and$ \begin{split} f(r) = & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right] \\& \sinh \left(b r^2+c\right). \end{split} $
(17) The variations of the two metric functions are shown in Fig. 1. For
$ n = -2 $ to$ n = -18 $ the behavior of metric function changes slightly.Figure 1. (color online) Variation of metric functions for neutron star in Vela X-1 with parameters
$n = -2$ to$ -18,\; b = 0.001/{\rm{km}}^2,$ $ c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ Using metric potentials given in Eq. (15) and (16), the expressions of
$ \rho, p_r, \Delta $ , and$ p_t $ can be calculated as$ p_r = \frac{f_2(r) \sqrt{a \left[\cosh \left(b r^2+c\right)+1\right]^n}}{8 \pi f_1(r) \left(a r^2 \left(\cosh \left(b r^2+c\right)+1\right)^n+1\right)}, $
(18) $\begin{split} \rho = & \frac{a \left[\cosh \left(b r^2+c\right)+1\right]^{n-1}}{8 \pi \left[a r^2 \left\{\cosh \left(b r^2+c\right)+1\right\}^n+1\right]^2} \\ &\times\Big[a r^2 \left\{\cosh \left(b r^2+c\right)+1\right\}^{n+1} \\ & +2 b n r^2 \sinh \left(b r^2+c\right)+3 \cosh \left(b r^2+c\right)+3\Big], \end{split} $
(19) $\begin{split} \Delta = & \frac{r f_3(r) \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n} }{f_4(r) \left[\cosh \left(b r^2+c\right)+1\right]} \\& \times {b n \sinh \left(b r^2+c\right)-a \left[\cosh \left(b r^2+c\right)+1\right]^{n+1} \over \left[a r^2 \left\{\cosh \left(b r^2+c\right)+1\right\}^n+1\right]^2}, \\ p_t =& p_r + \frac{\Delta}{8 \pi}. \end{split} $
(20) The variations of pressures, density, anisotropy, equation of state parameters,
$ {\rm d}\rho/{\rm d}r,\; {\rm d}p_r/{\rm d}r $ , and$ {\rm d}p_t/{\rm d}r $ are shown in Figs. 2–6. As values of$ n $ increase the central density, anisotropy, adiabatic index decrease, however, the pressures, equation of state parameters and speed of sounds decrease.Figure 2. (color online) Variation of pressures for neutron star in Vela X-1 with parameters
$n = -2$ to$ -18,\; b = 0.001/{\rm{km}}^2,$ $ c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}$ . Here,$\delta n$ is the increment in$n$ while ploting the graph.Figure 3. (color online) Variation of density for neutron star in Vela X-1 with parameters
$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2,$ $\; c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ Figure 4. (color online) Variation of pressure anisotropy for neutron star in Vela X-1 with parameters
$n = -2$ to$ -18,\; b = 0.001/{\rm{km}}^2,$ $c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ Figure 5. (color online) Variation of pressure and density gradients for neutron star in Vela X-1 with parameters
$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2,\; c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ Figure 6. (color online) Variation of equation of state parameters for neutron star in Vela X-1 with parameters
$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2,\; c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ where,
$\begin{split} f_1(r) =& 2 A b (n+1) r \sqrt{1-\cosh \left(b r^2+c\right)}-\sqrt{2} B \\ &\sinh \left(b r^2+c\right)\sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n} \\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right] \\ f_2(r) = & 2 b (n+1) \sqrt{1-\cosh \left(b r^2+c\right)} \Big(2 B r-A\\ &\sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n}\Big) +\sqrt{2} a B r \\ & \sinh \left(b r^2+c\right) \left[\cosh \left(b r^2+c\right)+1\right]^n \, \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right] \\ f_3(r) = & 2 b (n+1) \sqrt{1-\cosh \left(b r^2+c\right)} \Big(B r -A\\ & \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n}\Big) +\sqrt{2} a B r \end{split} $
$\begin{split} &\sinh \left(b r^2+c\right) \left[\cosh \left(b r^2+c\right)+1\right]^n \,\\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right]\\ f_4(r) = & 2 A b (n+1) r \sqrt{1-\cosh \left(b r^2+c\right)} -\sqrt{2} B\\& \sinh \left(b r^2+c\right) \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n} \, \\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b r^2+c}{2} \right)\right]. \end{split} $
-
Assuming the exterior spacetime to be the Schwarzschild solution, which has to match smoothly with our interior solution and is given by
$ \begin{split} {\rm d}s^2 = \left(1-{2M\over r}\right) {\rm d}t^2-\left(1-{2M\over r}\right)^{-1}{\rm d}r^2 -r^2({\rm d}\theta^2+\sin^2 \theta \; {\rm d}\phi^2). \end{split} $
(21) By matching the first and second fundamental forms the interior solution of Eq. (1) and exterior solution of Eq. (21) at the boundary
$ r = R $ (Darmois-Israel condition [54,55]) we get$\begin{split} {\rm e}^{\nu_b/2} =& 1-{2M \over R} \\=& A-\frac{ f(R) B \sqrt{a {^2} \left[\cosh \left(b R^2+c\right)+1)\right]^n}}{b (n+1)\sqrt{2-2 \cosh \left(b R^2+c\right)}}, \end{split} $
(22) $\begin{split} {\rm e}^{-\lambda_b} = &1-{2M \over R} \\ &= \Bigg[1+ a R^2 \big\{1+ \cosh \left(b R^2+c\right)\big\}^n \Bigg]^{-1}, \end{split} $
(23) $ p_r(R) = 0. $
(24) Using the boundary conditions (22–24), we get
$ a = \frac{2 M \left[\cosh \left(b R^2+c\right)+1\right]^{-n}}{R^2 (R-2 M)} , $
(25) $ A = \frac{B \left[\cosh \left(b R^2+c\right)+1\right]^{-n/2}}{2 \sqrt{a} b (n+1) \sqrt{1-\cosh \left(b R^2+c\right)}}, $
(26) $\begin{split} B = & \frac{\sqrt{a}}{2} \sqrt{1-\frac{2 M}{R}} \Big[\cosh \left(b R^2+c\right)+1\Big]^{n/2} \\ &\times \Bigg[\sqrt{2} a \sinh \left(b R^2+c\right) \left[\cosh \left(b R^2+c\right)+1\right]^n \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{b R^2+c}{2}\right)\right] \\ &+4 b (n+1) \sqrt{1-\cosh \left(b R^2+c\right)} \Bigg]. \end{split} $
(27) -
The central pressure and density at the interior are given by
$ \begin{split} 8\pi p_r(0) = & 8\pi p_t(0) = \Bigg\{\sqrt{2} a B \sinh c \left(\cosh c +1\right)^n \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{c}{2}\right)\right]\Bigg\} \\ &\Bigg\{8 \pi \Big (\sqrt{2} B \sinh c \sqrt{a \left(\cosh c + 1\right)^n}\\ &_2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{c}{2}\right)\right] \\ &-2 A b (n+1) \sqrt{1-\cosh c}\Big)\Bigg\}^{-1}>0, \end{split} $
(28) $ \rho(0) = \frac{3a \left(\cosh c +1\right)^{n-1} \left(\cosh c + 1\right)}{8\pi}>0. $
(29) The finite central values of the above parameters ensure that the solution is non-singular. The Zeldovich's condition, i.e.,
$ p_r/\rho $ at center is$ \leqslant 1 $ , which is a prerequisite for physical matters. -
The velocity of sound inside the stellar interior can be determined using
$ v_r^2 = {{\rm d}p_r/{\rm d}r \over {\rm d}\rho/{\rm d}r},\; \; \; v_t ^2 = {{\rm d}p_t/{\rm d}r \over {\rm d}\rho/{\rm d}r}. $
(30) For a stable configuration, the stability factor
$ v_t^2-v_r^2 $ should lie between 0 and –1 [56,57]. Variations of sound speed and stability factor are shown in Figs. 7 and 8, respectively. The figures depict that the class of solution satisfy the causality condition and stability criterion. If$ n = 0 $ , some parts of the stability factor becomes positive and hence introduces instability in the model. However, for$ n $ beyond –18, the stability factor seems stable.Figure 7. (color online) Variation of velocities of sound for neutron star in Vela X-1 with parameters
$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2, $ $ c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ Figure 8. (color online) Variation of stability factor for neutron star in Vela X-1 with parameters
$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2, $ $ c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ The relativistic adiabatic index is given by
$ \Gamma = {\rho+p_r \over p_r}\; {{\rm d}p_r \over {\rm d}\rho}. $
(31) For a static configuration at equilibrium,
$ \Gamma $ has to be more than 4/3 [58]. Figure 9 shows that the adiabatic index is >4/3. -
The modified Tolman-Oppenheimer-Volkoff (TOV) equation for anisotropic fluid distribution was given by [59] as
$ -{M_g(\rho+p_r) \over r^2}\; {\rm e}^{(\lambda-\nu)/2}-{{\rm d}p_r \over {\rm d}r}+{2\Delta \over r} = 0, $
(32) provided,
$ M_g(r) = {1\over 2}\; r^2 \nu' {\rm e}^{(\nu-\lambda)/2}. $
(33) The above Eq. (32) can be written in terms of balanced force equation due to anisotropy (
$ F_a $ ), gravity ($ F_g $ ) and hydrostatic ($ F_h $ ), i.e.,$ F_g+F_h+F_a = 0. $
(34) Here
$ F_g = -{M_g(\rho+p_r) \over r^2}\; {\rm e}^{(\lambda-\nu)/2}, $
(35) $ F_h = -{{\rm d}p_r \over {\rm d}r}, $
(36) $ F_a = {2\Delta \over r}. $
(37) The TOV Eq. (34) is plotted in Fig. 10, which shows that all the three forces counter-balance each other. As
$ n $ decreases from –2 to –18, the peak of the$ F_g $ increases,$ F_h $ is almost same from the center up to about 4 km and show significant increment up to the surface. However,$ F_a $ decreases as$ n $ approaches –18. -
The satisfaction of the static stability criterion ensures that the solution is static and stable. This was proposed independently by Harrison et al. [60] and Zeldovich-Novikov [61]. According to this criterion, the mass of compact stars must be an increasing function of its central density, i.e.,
$ {\rm d}M/{\rm d}\rho_c >0 $ .For this class of solution, mass as a function of central density can be written as
$ M(\rho_c) = \frac{4 \pi r^3 \rho _c \left[\cosh \left(b R^2+c\right)+1\right]^n}{8 \pi R^2 \rho _c \left[\cosh \left(b R^2+c\right)+1\right]^n+3 (\cosh c+1)^n}, \\ $
(38) $ \begin{split} {\partial M \over \partial \rho_c} =& \frac{12 \pi R^3 \left[\cosh \left(b R^2+c\right)+1\right]^n}{(\cosh c+1)^{-n}} \bigg[3 (\cosh c+1)^n \\& +8 \pi R^2 \rho _c \left\{\cosh \left(b R^2+c\right)+1\right\}^n\bigg]^{-2} >0. \end{split} $
(39) Referring to Fig. 11, we see that the class of solution fulfills this criterion.
Figure 11. (color online) Variation of mass with central density for neutron star in Vela X-1 with parameters
$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2$ and$R = 9.56\;{\rm{km}}.$ Now, the gravitational red-shift is given by
$ \begin{split} z (r) = & {\rm e}^{-\nu/2}-1 \\ =& \Bigg[-\frac{ f(r) B \sqrt{a r^2 \left[\cosh \left(b r^2+c\right)+1)\right]^n}}{b (n+1) r \sqrt{2-2 \cosh \left(b r^2+c\right)}}+ A \Bigg]^{-1} - 1. \end{split} $
(40) The variation of red-shift is shown in Fig. 12.
-
The mass function and compactness factor of the solution can be determined using the equations given below:
$\begin{split} m(r) = & \int_0^r 4\pi\rho(r)\; r^2 \; {\rm d}r \\ =& \frac{a r^3 \left[\cosh \left(b r^2+c\right)+1\right]^n}{2 a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n+2}, \end{split}$
(41) $ \begin{split} u(r) = & \frac{2 m(r)}{r} \\ =& \frac{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n}{a r^2 \left[\cosh \left(b r^2+c\right)+1\right]^n+1}. \end{split} $
(42) The surface red-shift can be found as
$ z_s = {\rm e}^{\lambda_b/2}-1 = (1-u_b)^{-1/2}-1. $
(43) Using the Buchdahl limit, i.e.,
$ u = 8/9 $ , we obtain the maximum surface redshift$ z_s({\rm max}) = 2 $ . When the compactness parameter is zero, the surface red-shift is likewise zero. As the compactness parameter reaches the Buchdahl limit, i.e.,$ u = 8/9 $ , the surface red-shift becomes exactly two. However, if the compactness parameter is beyond the Buchdahl limit, then because of the formation of singularity, the surface red-shift blows up. However, Ivanov [62] has derived that for a realistic anisotropic star models the surface red-shift$ Z_s $ cannot go beyond to 5.211 (this value corresponds to a model without the cosmological constant). -
For a uniformly rotating star with angular velocity
$ \Omega $ , the moment of inertia is given by$ I = {8\pi \over 3} \int_0^R r^4 (\rho+p_r) {\rm e}^{(\lambda-\nu)/2} \; {\omega \over \Omega}\; {\rm d}r $
(44) where the rotational drag
$ \omega $ satisfies the Hartle's equation$ {{\rm d} \over {\rm d}r} \left(r^4 j \; {{\rm d}\omega \over {\rm d}r} \right) = -4r^3\omega\; {{\rm d}j \over {\rm d}r} $
(45) with
$ j = {\rm e}^{-(\lambda+\nu)/2} $ , which has boundary value$ j(R) = 1 $ . The approximate solution of the moment of inertia$ I $ up to the maximum mass$ M_{\rm max} $ is provided by Bejger and Haensel [63] as$ I = {2 \over 5} \Big(1+x\Big) {MR^2}, $
(46) where parameter
$ x = (M/R)\cdot {\rm km}/M_\odot $ . For this class of solution, we plotted the mass vs.$ I $ in Fig. 15 that shows as$ n $ increases, the mass also increases, while the moment of inertia increases up to certain value of mass and subsequently decreases. Comparing Figs. 13 and 15, we see that the mass corresponding to$ I_{\rm max} $ is not equal to$ M_{\rm max} $ from the$ M-R $ diagram. In fact, the mass corresponding to$ I_{\rm max} $ is lower by ~1.46% from the$ M_{\rm max} $ . This happens to the equation of states without any strong high-density softening due to hyperonization or phase transition to an exotic state [64]. Using this graph, we can estimate that the maximum moment of inertia for a particular compact star or by matching the observed$ I $ with the$ I_{\rm max} $ , we can determine the validity of a model. The causality of the maximum mass in Fig. 13, especially the star for$ 2.529M_\odot $ and 12 km is verified from the behaviour of velocity of sound in Fig. 14.Figure 13. (color online) Variation of mass with radius for
$a = 0.01, \; b = 0.001$ and$c = 0.0001.$ Figure 15. (color online) Variation of moment of inertia with mass for
$n = -2$ to$n = -3$ taking$a = 0.01 /{\rm{km}}^2,\; $ $ b = 0.001/{\rm{km}}^2,\; c = 0.0001.$ A rotating compact star can hold higher
$ M_{\rm max} $ than a non-rotating one. The mass relationship between a non-rotating and rotating compact star is given in the units ($ G = C = 1 $ ) and can be written as [65]$ M_{\rm rot} = M_{\rm non-rot}+{1 \over 2}I\Omega^2. $
(47) Because of the centrifugal force, the radius at the equator increases up to some factor as compared to the static one. Cheng and Harko [66] found the approximate radii for static and rotating stars as
$ R_{\rm rot}/R_{\rm non-rot} \approx 1.626 $ , respectively. Assuming the compact star is rotating in the Kepler frequency$ \Omega_K = (GM_{\rm non-rot}/R^3_{\rm non-rot})^{1/2} $ and using the Cheng-Harko formula, we plotted the$ M-R $ graph for rotating and non-rotating stars (Fig. 16). The corresponding frequency of a rotating star can be determined as [67]Figure 16. (color online) Variation of mass with radius for
$n = -2$ &$n = -4$ taking$a = 0.01 /{\rm{km}}^2,\; b = 0.001/{\rm{km}}^2,\; c = 0.0001$ for a rotating and non-rotating star.$ \nu \approx 1.22 \left({R_{\rm non-rot} \over 10 {\rm km}}\right)^{-3/2} \left({M_{\rm non-rot} \over M_\odot}\right)^{1/2}\; {\rm kHz}. $
(48) The variation of frequency with mass is shown in Fig. 17. This shows that the frequency of rotation corresponds to the maximum mass. In contrast, we like to mention that recently, the direct detection of the gravitational wave (GW) signal
$ {\rm GW}1- 70817 $ has been reported by the LIGO-Virgo collaboration from a binary compact star system [68]. New constraints for the tidal deformability of the 1.4 solar mass compact stars ($ \Lambda_{1.4} $ ) have been estimated as$ \Lambda_{1.4} < 800 $ [69], which can also place constraints on the equation of state (EOS) for the star matter and constrain the parameter sets for phenomenological models. In the studies of Refs. [69–71], researchers have used different phenomenological models to calculate the properties of the tidal deformability and the maximum mass of neutron stars or quark stars with the constraints of$ {\rm GW}1- 70817 $ , which can provide other alternative methods to constrain the parameter sets in the models. -
Any physical solutions other than those representing exotic matters must fulfill all the energy conditions, i.e., strong, weak, null, and dominant energy conditions, which are stated as follows,
$ {\rm{NEC}} \;\;:\;\; T_{\mu \nu}l^\mu l^\nu \geqslant 0\; {\rm{or}}\; \rho+p_i \geqslant 0 \quad\quad\quad\quad\quad\quad $
(49) $ {\rm{WEC}} \;\;:\;\; T_{\mu \nu}t^\mu t^\nu \geqslant 0\; {\rm{or}}\; \rho \geqslant 0,\; \rho+p_i \geqslant 0 \quad\quad\quad $
(50) $ \begin{array}{l} {\rm{SEC}} \;\;:\;\; T_{\mu \nu}t^\mu t^\nu - \dfrac{1}{ 2} T^\lambda_\lambda t^\sigma t_\sigma \geqslant 0 \; {\rm{or}}\; \rho+\displaystyle\sum_i p_i \geqslant 0. \\ {\rm{DEC}} \;\;:\;\; T_{\mu \nu}t^\mu t^\nu \geqslant 0 \; {\rm{or}}\; \rho \geqslant |p_i| \\ \quad\quad\quad\;\;\;\;{\rm{where}}\; T^{\mu \nu}t_\mu \in {\rm{nonspace-like \;vector}}. \end{array} $
(51) where
$ i\equiv ({\rm radial}\; r,\; {\rm transverse} \; t),\; t^\mu $ and$ l^\mu $ are the time-like vector and null vector, respectively.Because the pressure and density are positive throughout the stellar objects, it is obvious that the energy conditions NEC, WEC, and SEC are satisfied vacuously. We have shown the graphical representation for dominant energy conditions in Figs. 18-20, where it can be observed that our solutions are also valid under dominant energy conditions.
Figure 18. (color online) Variation of
$\rho +p_r$ for neutron star in Vela X-1 with parameters$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2, \; $ $c = 0.0001,\;M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ Figure 19. (color online) Variation of
$\rho +p_t$ for neutron star in Vela X-1 with parameters$n = -2$ to$-18,\; b = 0.001/{\rm{km}}^2, \;$ $c = 0.0001,\; M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ Figure 20. (color online) Variation of
$\rho +p_r+2p_t$ for neutron star in Vela X-1 with parameters$n = -2$ to$ -18,\; b = 0.001/{\rm{km}}^2,$ $c = 0.0001, M = 1.77M_\odot$ and$R = 9.56\;{\rm{km}}.$ n $ a $ $ A $ $ B $ $M \; M_\odot$ $ R\;{\rm{ km}}$ $ z_c $ $ \rho_c \times 10^{14} $ $ g/cc $ $ \rho_s\times 10^{14} $ $ g/cc $ $ p_c\times 10^{34} $ $ {\rm dyne}/{\rm cm}^2 $ $ \Gamma_{rc} $ −2 0.0259 0.6766 0.03183 1.77 9.56 0.477 10.44 4.89 5.31 1.91 −6 0.4170 0.6763 0.03183 1.77 9.56 0.478 10.50 4.85 5.22 1.93 −10 6.7279 0.6759 0.03183 1.77 9.56 0.479 10.59 4.81 5.13 1.95 −14 108.55 0.6756 0.03183 1.77 9.56 0.480 10.68 4.76 5.04 1.98 −18 1751.4 0.6753 0.03183 1.77 9.56 0.481 10.77 4.71 4.94 2.00 Table 1. Central and surface values of some parameters for different values of
$ n .$ -
Herrera et al. [76] proposed an algorithm for generating all types of spherically symmetric static solutions using two physical quantities, namely anisotropy and a function related to the redshift. These two generators are respectively defined as
$ \zeta(r) = {\nu'\over 2} +{1 \over r} \; \; \; {\rm{and}} \; \; \; \Pi(r) = 8\pi(p_r - p_t). $
(52) For this solution, they are found to be
$\begin{split} \zeta(r) = & {1 \over r}+4 b B (n+1) r^2 \sinh ^2\left[\frac{1}{2} \left(b r^2+c\right)\right] \\ &\sqrt{a \left(\cosh \left(b r^2+c\right)+1\right)^n} \Bigg[B \sinh \left(b r^2+c\right) \\ & \sqrt{2-2 \cosh \left(b r^2+c\right)} \sqrt{a r^2 \left(\cosh \left(b r^2+c\right)+1\right)^n} \\ & _2F_1\left[\frac{1}{2},\frac{n+1}{2};\frac{n+3}{2};\cosh ^2\left(\frac{1}{2} \left\{b r^2+c\right\}\right)\right] \\ & +4 A b (n+1) r \sinh ^2\left(\frac{1}{2} \left\{b r^2+c\right\}\right) \Bigg]^{-1},\end{split} $
(53) $ \Pi(r) = -\Delta (r). \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\;\;\;$
(54) S.K. Maurya acknowledges to the administration of the University of Nizwa for their continuous support and encouragement.
Static fluid spheres admitting Karmarkar condition
- Received Date: 2019-07-22
- Accepted Date: 2019-12-06
- Available Online: 2020-03-01
Abstract: We explore a new relativistic anisotropic solution of the Einstein field equations for compact stars based on embedding class one condition. For this purpose, we use the embedding class one methodology by employing the Karmarkar condition. Employing this methodology, we obtain a particular differential equation that connects both the gravitational potentials