-
The charmless two-body B meson decays are induced by weak interactions via the tree diagram and the penguin diagram at the quark level. The tree level weak decay diagram contributes via the so-called color-favored tree emission diagram T, color-suppressed tree emission diagram C, W-exchange tree diagrams E, and the W annihilation tree diagrams A, which are shown in Fig. 1. The 1-loop corrections of the QCD penguin diagrams are not suppressed due to the larger CKM matrix element compared with the tree diagram. They are also grouped into four categories: (a) the QCD-penguin emission diagram P, (b) the flavor-singlet QCD-penguin diagram
$ P_C $ orEW-penguin diagram $ P_{EW} $ , (c) the time-like QCD-penguin diagram$ P_E $ , and (d) the space-like QCD-penguin annihilation diagram$ P_A $ , shown in Fig. 2.Figure 1. Topological tree diagrams contributing to
$ B\to PP $ and$ B\to PV $ decays: (a) the color-favored tree emission diagram T, (b) the color-suppressed tree emission diagram C, (c) the W-exchange diagram E , and (d) the W-annihilation diagram A.Figure 2. Topological penguin diagrams contributing to
$ B\to PP $ and$ B\to PV $ decays: (a) the QCD-penguin emission diagram P, (b) the flavor-singlet QCD-penguin diagram$ P_C $ orEW-penguin diagram $ P_{EW} $ , (c) the time-like QCD-penguin diagram$ P_E $ , and (d) the space-like QCD-penguin annihilation diagram$ P_A $ .The color-favored tree (T) topology shown in Fig. 1(a)was proven to be factorizable to all orders of
$ \alpha_{s} $ in the QCD factorization approach [25], the perturbative QCD factorization approach [26] and the soft-collinear effective theory [27], and it is easily parametrized as$ \begin{split} T^{P_{1}P_{2}} =& {\rm i}\frac{G_{F}}{\sqrt{2}}V_{ub}V^*_{uq^{'}}a_{1} (\mu)f_{p_{2}}(m_{B}^{2}-m_{p_{1}}^{2})F_{0}^{BP_{1}}(m_{p_{2}}^{2}),\\[1mm] T^{PV} =& \sqrt{2}G_{F}V_{ub}V^*_{uq^{'}}a_{1} (\mu)f_{V} m_{V}F_{1}^{B-P}(m_{V}^{2})(\varepsilon^{*}_{V}\cdot p_{B}),\\[1mm] T^{VP} =& \sqrt{2}G_{F}V_{ub}V^*_{uq^{'}}a_{1} (\mu)f_{P} m_{V}A_{0}^{B-V}(m_{P}^{2})(\varepsilon^{*}_{V}\cdot p_{B}). \end{split} $
(1) The superscript in
$ T^{P_{1}P_{2}} $ denotes that the final mesons are two pseudoscalar mesons, and in$ T^{PV(VP)} $ that the recoiling mesons are pseudoscalar meson (vector meson).$ q' = d,s $ quark in the$ \Delta S = 0,1 $ transition, respectively.$ a_1(\mu) $ is the effective Wilson coefficient from the short distance QCD corrections,$ a_1(\mu) = C_2(\mu)+C_1(\mu)/3 = 1.05 $ at next-to-leading order [28], with factorization scale$ \mu $ , insensitive to final state mesons, usually chosen at$ {m_b}/2 = 2.1 \mathrm{GeV} $ . The decay constants$ f_{P} $ ,$ f_{V} $ and the form factors$ F_{0}^{BP_{1}} $ ,$ F_{1}^{B-P} $ and$ A_{0}^{B-V} $ characterize the$ SU(3) $ breaking effects.$ \varepsilon^{*}_{V} $ is the polarization vector of vector meson, and$ p_{B} $ is the 4-momentum of B meson.We parametrize the non-factorization dominant color suppressed tree diagrams as
$ \begin{split} C^{P_{1}P_{2}} =& {\rm i}\frac{G_{F}}{\sqrt{2}}V_{ub}V^*_{uq^{'}}\chi^{C}\mathrm{e}^{{\rm i}\phi^{C}} f_{p_{2}}(m_{B}^{2}-m_{p_{1}}^{2})F_{0}^{BP_{1}}(m_{p_{2}}^{2}),\\[1mm] C^{PV} =& \sqrt{2}G_{F}V_{ub}V^*_{uq^{'}}\chi^{C^{\prime}}\mathrm{e}^{{\rm i}\phi^{C^{\prime}}} f_{V} m_{V}F_{1}^{B-P}(m_{V}^{2})(\varepsilon^{*}_{V}\cdot p_{B}), \\[1mm] C^{VP} =& \sqrt{2}G_{F}V_{ub}V^*_{uq^{'}}\chi^{C}\mathrm{e}^{{\rm i}\phi^{C}} f_{P} m_{V}A_{0}^{B-V}(m_{P}^{2})(\varepsilon^{*}_{V}\cdot p_{B}), \end{split} $
(2) where
$ \chi^{C} $ ,$ \phi^{C} $ represent the magnitude and phase of the pseudo-scalar meson emitted decays$ B\to PP $ ,$ VP $ . The prime in$ \chi^{C^{\prime}} $ ,$ \phi^{C^{\prime}} $ denotes the difference with respect to the hadronic parameters in the amplitude of the vector meson emitted decay$ B\to PV $ . Similarly, we parametrize the W exchange diagrams as$ \begin{split} E^{P_{1}P_{2}} =& {\rm i}\frac{G_{F}}{\sqrt{2}}V_{ub}V^*_{uq^{'}} \chi^{E} \mathrm{e}^{{\rm i}\phi^{E}} f_{B}m_{B}^{2}\left(\frac{f_{p_{1}}f_{p_{2}}}{f_{\pi}^{2}}\right),\\[1mm] E^{PV,VP} =& \sqrt{2}G_{F}V_{ub}V^*_{uq^{'}}\chi^{E} \mathrm{e}^{{\rm i}\phi^{E}} f_{B}m_{V}\left(\frac{f_{P}f_{V}}{f_{\pi}^{2}}\right)(\varepsilon^{*}_{V}\cdot p_{B} ), \end{split} $
(3) where
$ \chi^{E} $ ,$ \phi^{E} $ represent the magnitude and strong phase. We ignore the W annihilation topology, as its contribution is negligible, as discussed in [24].The penguin emission diagram was also proven to be factorizable to all orders of
$ \alpha_S $ in various QCD inspired approaches and the soft-collinear effective theory. Thus, its amplitudes are describe as follows:$ \begin{split} P^{PP} =& -{\rm i}\frac{G_{F}}{\sqrt{2}}V_{tb}V_{tq^{'}}^{*}\left[a_{4}(\mu)+\chi^{P}\mathrm{e}^{{\rm i}\phi^{P}}r_{\chi}\right] f_{p_{2}}(m_{B}^{2}-m_{p_{1}}^{2})\\ &\times F_{0}^{BP_{1}}(m_{p_{2}}^{2}), \\ P^{PV} =& -\sqrt{2}G_{F} V_{tb}V_{tq^{'}}^{*}a_{4}(\mu) f_{V}m_{V}F_{1}^{B-P}m_{V}^{2} (\varepsilon^{*}_{V}\cdot p_{B}), \end{split} $
$ \begin{split} P^{VP} =& -\sqrt{2}G_{F}V_{tb}V_{tq^{'}}^{*}\left[a_{4}(\mu)-\chi^{P} \mathrm{e}^{{\rm i}\phi^{P}}r_{\chi}\right] \\ &\times f_{P}m_{V}A_{0}^{B-V}(m_{P}^{2})(\varepsilon^{*}_{V}\cdot p_{B}), \end{split} $
(4) where the second terms denote the “chiral enhanced” penguin contributions, with the chiral factor of pseudo-scalar meson
$ r_{\chi} $ . The Wilson coefficient$ a_{4}(\mu) $ of effective penguin operators is calculated to the next-to-leading order [28]. We parametrize the flavor-singlet penguin diagram as$ \begin{split} P_{C}^{PP} =& -{\rm i}\frac{G_{F}}{\sqrt{2}}V_{tb}V_{tq^{'}}^{*}\chi^{P_C}\mathrm{e}^{{\rm i}\phi^{P_C}} f_{p_{2}}(m_{B}^{2}-m_{p_{1}}^{2})F_{0}^{BP_{1}}(m_{p_{2}}^{2}) ,\\ P_{C}^{PV} =& -\sqrt{2}G_{F}V_{tb}V_{tq^{'}}^{*} \chi^{P_C^{\prime}}\mathrm{e}^{{\rm i}\phi^{P_C^{\prime}}} f_{V}m_{V}F_{1}^{B-P}(m_{V}^{2})(\varepsilon^{*}_{V}\cdot p_{B}),\\ P_{C}^{VP} =& -\sqrt{2}G_{F}V_{tb}V_{tq^{'}}^{*} \chi^{P_C}\mathrm{e}^{{\rm i}\phi^{P_C}} f_{P}m_{V}A_{0}^{B-V}(m_{P}^{2})(\varepsilon^{*}_{V}\cdot p_{B}). \end{split} $
(5) Looking carefully at Fig. 2(a) and 2(d), one can see that the only difference between them is the hard gluon attached to a light quark pair. Since we do not calculate the QCD corrections but fit them to the experimental measurements, these two diagrams give the same contribution. Since the contribution of pseudo-scalar meson emission
$ P_{A}^{PP,VP} $ is already encoded in the parameters$ r_{\chi}\chi^{P} $ ,$ \mathrm{e}^{{\rm i}\phi^{P}} $ in Eq. (4) for diagram Fig. 2(a), we only have the vector meson contribution left for the space-like penguin diagrams,$ P_{A}^{PV} = -\sqrt{2}G_{F}V_{tb}V_{tq^{'}}^{*}\chi^{P_{A}}\mathrm{e}^{{\rm i}\phi^{P_{A}}} f_{B}m_{V}\left(\frac{f_{P}f_{V}}{f_{\pi}^{2}}\right)(\varepsilon^{*}_{V}\cdot p_{B}). $
(6) The contribution from the time-like penguin (
$ P_E $ ) diagram is arguably small, and can be ignored in the decay modes where it is not dominant [19].The electroweak penguin topology (
$ P_{EW} $ ) is similar to the tree and penguin emission diagrams, which can be proven by factorization. We calculate this diagram in QCD as$ \begin{align} P_{EW}^{PP}& = -{\rm i}\frac{G_{F}}{\sqrt{2}}V_{tb}V_{tq^{'}}^{*}e_{q}\frac{3}{2}a_{9}(\mu) f_{p_{2}}(m_{B}^{2}-m_{p_{1}}^{2})F_{0}^{BP_{1}}(m_{p_{2}}^{2}),\\ P_{ EW}^{PV}& = -\sqrt{2}G_{F}V_{tb}V_{tq^{'}}^{*}e_{q}\frac{3}{2}a_{9}(\mu) f_{V}m_{V}F_{1}^{B-P}(m_{V}^{2})(\varepsilon^{*}_{V}\cdot p_{B}),\\ P_{EW}^{VP}& = -\sqrt{2}G_{F}V_{tb}V_{tq^{'}}^{*}e_{q}\frac{3}{2}a_{9}(\mu) f_{P}m_{V}A_{0}^{B-V}(m_{P}^{2})(\varepsilon^{*}_{V}\cdot p_{B}), \end{align} $
(7) where
$ a_9(\mu) $ is the effective Wilson coefficient at the next-to-leading order. -
From Eqs. (1-7), one notices that all tree amplitudes are proportional to
$ V_{ub}V^*_{uq^{'}} $ while the penguin amplitudes are proportional to$ V_{tb}V_{tq^{'}}^{*} = - (V_{ub}V_{uq^{'}}^{*}+V_{cb}V_{cq^{'}}^{*}) $ . Except$ V_{ub} \equiv |V_{ub}|\, \mathrm{e}^{-{\rm i} \gamma} $ , all other CKM matrix elements$ V_{uq^{'}}^{*} $ ,$ V_{cb}V_{cq^{'}}^{*} $ are approximately real numbers without the electroweak phase. The phase angle$ \gamma $ is a free parameter to be fitted from the experimental data. The magnitudes of CKM matrix elements are input parameters from Ref. [29]$ \begin{split} |V_{ud}| & = 0.97420\pm 0.00021\, ,\; \; \; |V_{us}| = 0.2243\pm 0.0005\, ,\\[1mm] |V_{ub}| &= 0.00394\pm 0.00036\,, \;\;\; |V_{cd}| = 0.218\pm 0.004\, ,\\[1mm] |V_{cs}| &= 0.997\pm 0.017\, ,\; \; \; |V_{cb}| = 0.0422\pm 0.0008\, . \end{split} $
(8) The remaining parameters in the decay amplitude formulas are the meson decay constants and transition form factors. The meson decay constants are measured by experiments or calculated by theoretical approaches, such as the covariant light front approach [30], light-front holographic QCD [31], light-cone sum rules [32, 33], and QCD sum rules [34, 35]. We show their values in Table 1as an average from PDG [29].
$ f_{\pi} $ $ f_{K} $ $ f_{B} $ $ f_{\rho} $ $ f_{K^{*}} $ $ f_{\omega} $ $ f_{\phi} $ $ 130.2 \pm 1.7 $ $ 155.6 \pm 0.4 $ $ 190.9 \pm 4.1 $ $ 213 \pm 11 $ $ 220 \pm 11 $ $ 192\pm 10 $ $ 225 \pm 11 $ Table 1. The decay constants of light pseudo-scalar mesons and vector mesons (in unit of MeV).
The transition form factors of B meson decays are usually measured via the semileptonic B decay modes together with the CKM matrix elements. Theoretically, they are calculated in various approaches: the constitute quark model and light cone quark model [36–41], covariant light front approach (LFQM) [30, 42, 43], light-cone sum rules [33, 44–66], PQCD [67–76] and lattice QCD [77–79]. We combine these results and use the average of the transition form factors of B meson decays at
$ q^{2} $ = 0, shown in Table 2. The$ q^{2} $ dependence of the transition form factors of B meson decays are described with the dipole parametrization,$ \; \; \; F_{0}^{B \to\pi}\; \; \; $ $ \; \; \; F_{0}^{B\to K}\; \; \; $ $ \; \; \; F_{0}^{B \to\eta_{q}}\; \; \; $ $ \; \; \; F_{1}^{B \to\pi}\; \; \; $ $ \; \; \; F_{1}^{B\to K}\; \; \; $ $ \; \; \; F_{1}^{B \to\eta_{q}}\; \; \; $ $ \; \; \; A_{0}^{B \to\rho}\; \; \; $ $ \; \; \; A_{0}^{B\to \omega}\; \; \; $ $ \; \; \; A_{0}^{B\to K^{*}}\; \; \; $ $ F_i(0) $ $ 0.28 \pm 0.03 $ $ 0.31\pm 0.03 $ $ 0.21 \pm 0.02 $ $ 0.28\pm 0.03 $ $ 0.31\pm 0.03 $ $ 0.21 \pm 0.02 $ $ 0.36 \pm 0.04 $ $ 0.32 \pm 0.03 $ $ 0.39\pm 0.04 $ $ \alpha_1 $ 0.50 0.53 0.52 0.52 0.54 1.43 1.56 1.60 1.51 $ \alpha_2 $ -0.13 -0.13 0 0.45 0.50 0.41 0.17 0.22 0.14 Table 2. The transition form factors of B meson decays at
$ q^{2} $ = 0 and dipole model parameters.$ \begin{split} F_{i}(q^{2}) = {F_{i}(0)\over 1-\alpha_{1}\displaystyle{q^{2}\over M_{\rm pole}^{2}}+ \alpha_{2}\displaystyle{q^{4}\over M_{\rm pole}^{4}}}, \end{split}$
(9) where
$ F_{i} $ denotes the form factors$ F_{0} $ ,$ F_{1} $ , or$ A_{0} $ , while$ M_{\rm pole} $ is the mass of the corresponding pole state, such as$ B_{(s)} $ for$ A_{0} $ , and$ B^{*}_{(s)} $ for$ F_{0,1} $ .$ q^2 $ of charmless B meson decays is not far from zero, thus the uncertainties of the dipole model parameters are neglected in our calculations. The dipole model parameters are also listed in Table 2.To minimize the statistical uncertainties, we use the maximum number of experimental observables of the
$ B \to PP $ ,$ PV $ decays. However, some of them were measured with very poor precision. Hence, we do not use in our fit those measurements with less than a$ 3\sigma $ significance. As a result, we have a total of 37 branching ratios and 11 CP violation observations for the$ B \to PP $ ,$ PV $ decays shown in Table 3 and Table 4, respectively, taken from the experimental data in Ref. [29], and the 2019 by averaging the measurements from LHCb [80–82], BELLE [83] and BABAR [84] and so on.Mode Amplitudes $ {\rm {Exp}} $ Mode Amplitudes $ {\rm {Exp}} $ $ \pi^{-} \pi^{0} $ $ T,C,P_{EW} $ $ 5.5\pm0.4 $ $ \pi^{+} \rho^{-} $ $ T,E,P,(P_E),P_A $ $ 14.6\pm1.6 $ $ \pi^{-} \eta $ $ T,C,P,P_C,P_{EW} $ $ 4.02\pm0.27 $ $ \pi^{-} \rho^{+} $ $ T,E,P,(P_E) $ $ 8.4\pm1.1 $ $ \pi^{-} \eta^{'} $ $ T,C,P,P_C,P_{EW} $ $ 2.7\pm0.9 $ $ \pi^{0} \rho^{0} $ $ C,C^{\prime},E,P,P_A,(P_E),P_{EW} $ $ 2\pm0.5 $ $ \pi^{+} \pi^{-} $ $ T,E,(P_E),P $ $ 5.12\pm0.19 $ $ \pi^{-} \bar{K^{*0}} $ $ P,P_A $ $ 10.1\pm0.9 $ $ \pi^{0} \pi^{0} $ $ C,E,P,(P_E),P_{EW} $ $ 1.59\pm0.26 $ $ \pi^{0} K^{*-} $ $ T,C,P,P_A,P_{EW} $ $ 8.2\pm1.9 $ $ K^{-} K^{0} $ $ P $ $ 1.31\pm0.17 $ $ \eta K^{*-} $ $ T,C,P,P_C,P_A,P_{EW} $ $ 19.3\pm1.6 $ $ K^{0} \bar{K^{0}} $ $ P $ $ 1.21\pm0.16 $ $ K^{-} \rho^{0} $ $ T,C^{\prime},P,P_{EW} $ $ 3.7\pm0.5 $ $ \pi^{-} \bar{K^{0}} $ $ P $ $ 23.7\pm0.8 $ $ K^{-} \omega $ $ T,C^{\prime},P,P_C^{\prime},P_{EW} $ $ 6.5\pm0.4 $ $ \pi^{0} K^{-} $ $ T,C,P,P_{EW} $ $ 12.9\pm0.5 $ $ K^{-} \phi $ $ P,P_C^{\prime},P_A,P_{EW} $ $ 8.8^{+0.7}_{-0.6} $ $ \eta K^{-} $ $ T,C,P,P_C,P_{EW} $ $ 2.4\pm0.4 $ $ \bar{K^{0}} \rho^{-} $ $ P $ $ 7.3^{+1.0}_{-1.2} $ $ \eta^{'} K^{-} $ $ T,C,P,P_C,P_{EW} $ $ 70.6\pm2.5 $ $ \pi^{+} K^{*-} $ $ T,P,P_A $ $ 8.4\pm0.8 $ $ \pi^{+} K^{-} $ $ T,P $ $ 19.6\pm0.5 $ $ \pi^{0} \bar{K^{*0}} $ $ C,P,P_A,P_{EW} $ $ 3.3\pm0.6 $ $ \pi^{0} \bar{K^{0}} $ $ C,P,P_{EW} $ $ 9.9\pm0.5 $ $ \eta \bar{K^{*0}} $ $ C,P,P_C,P_A,P_{EW} $ $ 15.9\pm1 $ $ \eta \bar{K^{0}} $ $ C,P,P_C,P_{EW} $ $ 1.23^{+0.27}_{-0.24} $ $ \eta^{'} \bar{K^{*0}} $ $ C,P,P_C,P_C^{\prime},P_A,P_{EW} $ $ 2.8\pm0.6 $ $ \eta^{'} \bar{K^{0}} $ $ C,P,P_C,P_{EW} $ $ 66\pm4 $ $ K^{-} \rho^{+} $ $ T,P $ $ 7\pm0.9 $ $ \pi^{-} \rho^{0} $ $ T,C^{\prime},P,P_A,P_{EW} $ $ 8.3\pm1.2 $ $ \bar{K^{0}} \rho^{0} $ $ C^{\prime},P,P_{EW} $ $ 4.7\pm0.6 $ $ \pi^{-} \omega $ $ T,C^{\prime},P,P_C^{\prime},P_A,P_{EW} $ $ 6.9\pm0.5 $ $ \bar{K^{0}} \omega $ $ C^{\prime},P,P_C^{\prime},P_{EW} $ $ 4.8\pm0.4 $ $ \pi^{0} \rho^{-} $ $ T,C,P,P_A,P_{EW} $ $ 10.9\pm1.4 $ $ \bar{K^{0}} \phi $ $ P,P_C^{\prime},P_A,P_{EW} $ $ 7.3\pm0.7 $ $ \eta^{'} \rho^{-} $ $ T,C,P,P_C,P_A,P_{EW} $ $ 9.7\pm2.2 $ Table 3. Branching fractions
$ (\times10^{-6}) $ of the various$ \bar B \to PP, PV $ decay modes with the decay amplitudes listed in the second column.Mode $ {{\cal{A}}_{\rm {exp}} } $ $ \mathcal{S_{\rm {exp}} } $ Mode $ {{\cal{A}}_{\rm {exp}} } $ $ \mathcal{S_{\rm {exp}} } $ $ \pi^{+} \pi^{-} $ 0.31±0.05 −0.67±0.06 $ K_s \omega $ 0.7±0.21 $ \pi^{0} K_s $ 0.58±0.17 $ K_s \phi $ 0.59±0.14 $ \eta^{'} K_s $ 0.63±0.06 $ K^{-} \rho^{0} $ 0.37±0.10 $ \eta K^{-} $ −0.37±0.08 $ \pi^{+} K^{*-} $ −0.22±0.06 $ \pi^{+} K^{-} $ −0.082±0.006 $ \eta \bar{K^{*0}} $ 0.19±0.05 Table 4. The direct CP asymmetries (
$ {{\cal{A}}_{\rm {exp}} } $ ) and the mixing-induced CP asymmetries ($ \mathcal{S_{\rm {exp}} } $ ) in the$ \bar B\to PP, PV $ decays.We use the
$ \chi^2 $ fit method of the Minuit program [85], where the$ \chi^2 $ function is defined in terms of n experimental observables$ x_i \pm \Delta x_i $ and the corresponding theoretical values$ x_i^{\mathrm{th}} $ as$ \begin{split} \chi^{2} = \sum\limits_{i = 1}^{n}\left(\frac{x_i^{\rm th}-x_i}{\Delta x_i}\right)^2 . \end{split}$
(10) The theoretical values are written as functions of the 15 theoretical parameters of the topological amplitudes. The best fit parameters are
$ \begin{array}{clcl} \gamma &\hspace{-3mm}= (69.8 \pm 2.1)^{ \circ} , \\[1mm] \chi^{C} &\hspace{-3mm}= 0.41 \pm 0.06,\; \; \; &\phi^{C} & \hspace{-3mm}= -1.74 \pm 0.09, \\[1mm] \chi^{C^{\prime}} &\hspace{-3mm}= 0.40 \pm 0.17,\; \; \; & \phi^{C^{\prime}} &\hspace{-3mm} = 1.78\pm 0.10, \\[1mm] \chi^{E} &\hspace{-3mm}= 0.06\pm0.006,\; \; \; &\phi^{E} &\hspace{-3mm} = 2.76\pm 0.13,\\[1mm] \chi^{P} &\hspace{-3mm}= 0.09\pm0.003,\; \; \;& \phi^{P} &\hspace{-3mm} = 2.55\pm 0.03 ,\\[1mm] \chi^{P_C}&\hspace{-3mm}= 0.045 \pm 0.003,\; \; \; &\phi^{P_C} &\hspace{-3mm} = 1.53 \pm 0.08, \\[1mm] \chi^{P_C^{\prime}} &\hspace{-3mm}= 0.037\pm 0.003,\; \; \; & \phi^{P_C^{\prime}} &\hspace{-3mm} = 0.67 \pm 0.08, \\[1mm] \chi^{P_A} &\hspace{-3mm}= 0.006\pm0.0008,\; \; \; & \phi^{P_A} &\hspace{-3mm} = 1.49\pm 0.09, \end{array} $
(11) with
$ \chi^{2}/\text{d.o.f} = 45.4/33 = 1.4 $ . The uncertainties of the parameters shown above are given by the$ \chi^2 $ fit program Minuit, and are mainly due to the experimental statistical and systematic uncertainties. There are also theoretical uncertainties of the extracted$ \gamma $ values. The major source of theoretical uncertainties in our calculations are the uncertainties of the input parameters:$ |V_{ub}| $ ,$ |V_{cb}| $ , hadronic form factors and decay constants. We repeated the fit by varying the input parameters one by one assuming their Gaussian distribution. The theoretical uncertainties of$ \gamma $ were then assessed using the distribution of the central values of$ \gamma $ form these fits. The values of the theoretical uncertainty$ \sigma_{\mathrm{(T.)}} $ obtained are$ 0.2{^\circ} $ ,$ 0.2^{\circ} $ ,$ 0.9^{\circ} $ and$ 0.1^{\circ} $ from the uncertainties of$ |V_{ub}| $ ,$ |V_{cb}| $ , form factors and decay constants, respectively. The total theoretical uncertainty is$ 0.9^{\circ} $ . Our final result for$ \gamma $ is then$ (69.8 \pm 2.1 \pm 0.9) ^{\circ} $ , which is in good agreement with the current world averages:$ \gamma = (71.1^{+4.6}_{-5.3})^{\circ} $ [5],$ \gamma = (73.5^{+4.2}_{-5.1})^{\circ} $ [6] and$ \gamma = (70.0 \pm 4.2)^{\circ} $ [7], and the latest measurement of$ (74.0^{+5.0}_{-5.8})^{\circ} $ by the LHCb collaboration [8]. It is obvious that our uncertainties of$ \gamma $ are reduced to roughly a half of the uncertainties of the world-average values.
Extraction of the CKM phase γ from the charmless two-body B meson decays
- Received Date: 2020-01-08
- Available Online: 2020-06-01
Abstract: Using all experimentally measured charmless