-
Apart from the Crab-centered simulation, we performed a fast simulation of the array exposure across its field of view (FOV) to calculate the detection significance of all sources in TeVCat①. In this work, the FOV of WCDA is defined as the portion of the sky with a zenith angle
$ \leqslant 45^{\circ} $ . We project this FOV in local coordinates (zenith and azimuth), in which the zenith angle ($ \theta $ ) is binned in$ 0.08^{\circ} $ bins and the azimuth ($ \phi $ ) is binned in$ \frac{0.08^{\circ}}{\sin\theta} $ bins, so that each window contains the same steradian units for the solid angle$ \Omega = 1.95\times10^{-6} $ . Also, the sidereal day is divided into 3600 time bins, in other words, one day contains 3600 maps with an exposure time of 24 seconds. The predicted number of cosmic rays or diffuse$ \gamma $ rays in a window$ (t,\theta,\phi) $ is calculated as$ N_{i}(t,\theta,\phi) = \eta_{i}\int_{E} \phi_{i}(E)A_{i}(\theta,E)\Omega\, {\rm d}E\delta t, $
(1) where
$ \Omega $ is the solid angle in steradian units, and$ \delta t $ is the period of one map, that is 24 seconds. In the case when i stands for CRs,$ A_{i}(\theta,E) $ is the differential effective area of cosmic rays,$ \phi_{i}(E) $ is the cosmic ray spectrum [21], and$ \eta_{i} $ is the efficiency of CRs which passed the photon/hadron criterion. When i stands for the diffuse$ \gamma $ -rays, these parameters are the values for$ \gamma $ rays. We take the diffuse$ \gamma $ -rays spectra from Ref. [22]. We track every source located in FOV and calculate the number of$ \gamma $ -ray events from each source. The predicted number in a window$ (t,\theta,\phi) $ is calculated as$ N_{\gamma}(t,\theta,\phi) = \eta_{\gamma}\int_{E} \phi(E)_{\gamma}A_{\gamma}(\theta,E)\, {\rm d}E\delta t . $
(2) The meaning of each parameter is the same as in Eq. (1), but represent
$ \gamma $ -rays excluding the solid angle. The spectra of the sources used are listed in Tables 1, 2, 3, 4. The spectra of sources are described by a power law with a fixed index$ \phi(E) = N_{0}(\frac{E}{E_{0}})^{-\beta} $ , where$ N_0 $ is the differential flux at$ E_0 $ , and$ \beta $ is the spectral index. If the spectra of the sources are measured with an exponential energy cut, they are in the form$ \phi(E) = (\frac{E}{E_{0}})^{-\beta}{\rm e}^\frac{-E}{E_{\rm cut}} $ , where$ E_{\rm cut} $ is the exponential cutoff energy of the sources. For the extended sources, the extension is determined by fitting the excess map with a two-dimensional (2D) Gaussian convoluted with PSF [34]. Therefore, we use the 2D Gaussian model to produce the morphologies of the extended sources. The parameters for each source are listed in Tables 1,2,3,4.TeVCat Name ${\rm R.A.}/(^\circ)$ ${\rm Dec.}/(^\circ)$ $\sigma$ $N_0/{\rm (TeV^{-1 }cm^{-2}s^{-1})}$ $E_{0}/{\rm TeV}$ $\beta$ ${\rm Extension}/(^\circ)$ Ref. LS I +61303 40.14 61.26 9.4 $1.80\times 10^{-12}$ 1 2.34 − [23] HESS J1912+101 288.20 10.15 9.7 $3.66\times 10^{-14}$ 7 2.64 0.7 [11] W51 290.73 14.19 10.0 $2.61\times 10^{-14}$ 7 2.51 0.9 [11] ARGO J2031+ $4157^a$ 307.8 42.50 67.5 $3.50\times 10^{-9}$ 0.1 2.16 2 [9] Cassiopeia A 350.81 58.81 7.2 $1.45\times 10^{-12}$ 1 2.75 − [24] a: Identified as the counterpart of the Cygnus Cocoon at TeV energies, whose spectrum exhibits an exponential cutoff at 40 TeV. Table 1. Significance of superbubbles, SNRs, Shells, Binaries.
$\sigma$ is the significance of the sources,$N_0$ the differential flux at$E_0$ ,$\beta$ the spectral index, and Extension is the extended angular radius (in degrees) assuming the two-dimensional Gaussian model.TeVCat Name ${\rm R.A.}/(^\circ)$ ${\rm Dec.}/(^\circ)$ $\sigma$ $N_0/{\rm (TeV^{-1 }cm^{-2}s^{-1})}$ $E_{0}/{\rm TeV}$ $\beta$ ${\rm Extension}/(^\circ)$ Ref. Crab 83.63 22.01 307.7 $1.85\times 10^{-13}$ 7 2.58 − [11] Geminga 98.12 17.37 10.7 $4.87\times 10^{-14}$ 7 2.23 2 [11] HESS J1831-098 277.85 −9.90 9.4 $9.58\times 10^{-14}$ 7 2.64 0.9 [11] TeV J1930+188 292.63 18.87 23.9 $9.80\times 10^{-15}$ 7 2.74 − [11] Table 2. Significance of PWN.
$\sigma$ is the significance of the sources,$N_0$ the differential flux at$E_0$ ,$\beta$ the spectral index, and Extension is the extended angular radius (in degrees) assuming the two-dimensional Gaussian model.TeVCat Name ${\rm R.A.}/(^\circ)$ ${\rm Dec.}/(^\circ)$ $\sigma$ $N_0/{\rm (TeV^{-1 }cm^{-2}s^{-1})}$ $E_{0}/{\rm TeV}$ $\beta$ $E_{\rm cut}/{\rm TeV}$ Ref. S3 0218+ $35^f$ 35.27 35.94 6.4 $2.00\times 10^{-9}$ 0.1 3.8 − [25] VER J0521+211 80.44 21.21 12.4 $1.99\times 10^{-11}$ 0.4 3.44 − [26] RGB J0710+591 107.61 59.15 5.8 $9.20\times 10^{-13}$ 1 2.69 − [27] Markarian 421 166.08 38.19 236.8 $2.82\times 10^{-11}$ 1 2.21 5.4 [11] 1ES 1215+ $303^f$ 184.45 30.10 5.2 $2.30\times 10^{-11}$ 0.3 3.6 − [28] 1ES 1218+304 185.36 30.19 17.9 $1.40\times 10^{-12}$ 1 3.13 − [29] W Comae 185.38 28.23 11.1 $2.00\times 10^{-11}$ 0.4 3.81 − [30] M 87 187.70 12.40 6.8 $7.70\times 10^{-12}$ 0.3 2.21 − [6] H 1426+428 217.14 42.67 61.6 $4.37\times 10^{-12}$ 1 3.54 − [31] Markarian 501 253.47 39.76 47.5 $4.40\times 10^{-12}$ 1 1.6 5.7 [11] 1ES 1959+650 300.00 65.15 28.8 $6.12\times 10^{-12}$ 1 2.54 − [32] RGB J2056+ $496^f$ 314.18 49.67 9.7 $1.15\times 10^{-11}$ 0.4 2.77 − [33] 1ES 2344+514 356.77 51.71 19.2 $2.65\times 10^{-12}$ 0.91 2.46 − [7] f: The spectrum of this source is in a flare state. Table 3. Significance of AGN.
$\sigma$ is the significance of sources,$N_0$ the differential flux at$E_0$ ,$\beta$ the spectral index, and$E_{\rm cut}$ is the exponential cutoff energy of the sources.TeVCat Name ${\rm R.A.}/(^\circ)$ ${\rm Dec.}/(^\circ)$ $\sigma$ $N_0/{\rm (TeV^{-1 }cm^{-2}s^{-1})}$ $E_{0}/{\rm TeV}$ $\beta$ ${\rm Extension}/(^\circ)$ Ref. 2HWC J1309-054 197.31 −5.49 7.8 $1.23\times 10^{-14}$ 7 2.55 − [11] HESS J1813-126 273.34 −12.69 5.9 $2.74\times 10^{-14}$ 7 2.84 − [11] 2HWC J1825-134 276.46 −13.40 8.0 $2.49\times 10^{-13}$ 7 2.56 0.9 [11] 2HWC J1829+070 277.34 7.03 11.1 $8.10\times 10^{-15}$ 7 2.69 − [11] 2HWC J1837-065 279.36 −6.58 35.1 $3.41\times 10^{-13}$ 7 2.66 2 [11] 2HWC J1844-032 281.07 −3.25 10.8 $9.28\times 10^{-14}$ 7 2.51 0.6 [11] 2HWC J1852+013 283.01 1.38 27.8 $1.82\times 10^{-14}$ 7 2.9 − [11] MAGIC J1857.6+0297 284.40 2.97 9.2 $6.10\times 10^{-12}$ 1 2.39 0.1 [34] HESS J1858+020 284.58 2.09 8.3 $6.00\times 10^{-13}$ 1 2.17 0.08 [34] 2HWC J1902+048 285.51 4.86 31.1 $8.30\times 10^{-15}$ 7 3.22 − [11] 2HWC J1907+084 286.79 8.50 31.6 $7.30\times 10^{-15}$ 7 3.25 − [11] MGRO J1908+06 286.98 6.27 10.9 $8.51\times 10^{-14}$ 7 2.33 0.8 [11] 2HWC J1914+117 288.68 11.72 20.5 $8.50\times 10^{-15}$ 7 2.83 − [11] 2HWC J1921+131 290.30 13.13 20.9 $7.90\times 10^{-15}$ 7 2.75 − [11] 2HWC J1928+177 292.15 17.78 20.1 $1.07\times 10^{-14}$ 7 2.6 − [35] 2HWC J1938+238 294.74 23.81 26.3 $7.40\times 10^{-15}$ 7 2.96 − [11] 2HWC J1953+294 298.26 29.48 21.8 $8.30\times 10^{-15}$ 7 2.78 − [11] 2HWC J1955+285 298.83 28.59 7.8 $5.70\times 10^{-15}$ 7 2.4 − [11] 2HWC J2006+341 301.55 34.18 119.6 $9.60\times 10^{-15}$ 7 2.64 − [11] VER J2019+407 305.02 40.76 22.9 $1.50\times 10^{-12}$ 1 2.37 0.23 [36] Table 4. Significance of unidentified sources (UID).
$\sigma$ is the significance of sources,$N_0$ the differential flux at$E_0$ ,$\beta$ the spectral index, and Extension is the extended angular radius (in degrees) assuming the two-dimensional Gaussian model. -
Since the events in each pixel contain the
$ \gamma $ -ray signals and the background CRs, the key point is to estimate the background properly and test whether there is a significant excess. We use the All-Sky analysis method to estimate the background events, which has been successfully used in the Tibet AS$ \gamma $ experiment [37].The detection efficiency largely depends on the zenith angle, because more inclined events pass through a greater atmospheric depth. However, the efficiency in one zenith belt is independent of the azimuth angle given that WCDA is sitting almost in a horizontal plane. In the estimate of the background events in a window in the fast simulation, the window is called the "on-source window", and the sideband windows in the same zenith angle belt are referred to as the "off-source windows". The background events in the "on-source window" are estimated from the average number of "off-source windows". FOV in equatorial coordinates is divided into small pixels which measure
$ 0.1^\circ \times 0.1^\circ $ , and each window marked as$ (t,\theta,\phi) $ in the fast simulation corresponds to a pixel marked as$ (i,j) $ in equatorial coordinates. The number of events in the on-source window is denoted as$ N_{t,\theta,\phi} $ and the relative intensity as$ I_{i,j} $ , the number of events in the$ \phi' $ -th off-source window as$ N_{t,\theta,\phi'} $ and the relative intensity as$ I_{i',j'} $ , and we have$ \frac{N_{t,\theta,\phi}}{I_{i,j}} = <\frac{N_{t,\theta,\phi'}}{I_{i',j'}}> $ . For the FOV of WCDA,$ \tilde{\chi}^2 = \sum\limits_{i,j}^{}\left( \bigg(\dfrac{N_{t,\theta,\phi}}{I_{ij}} -\dfrac{1}{n_{\theta}-1} \displaystyle\sum_{\phi'}\dfrac{N_{t,\theta,\phi'}} {I_{i'j'}} \bigg) \bigg/ {\sigma_{t,\theta,\phi}}\right)^2 . $
(3) Here,
$ n_{\theta} $ represents the number of windows in the$ \theta $ zenith belt. We get the relative intensity$ I_{i,j} $ and the estimated error$ \delta I_{i,j} $ by minimizing$ \tilde{\chi}^2 $ . The background in each pixel is$ N_{bkg i,j} = \frac{N_{i,j}}{I_{i,j}} $ . The relative intensity gives the deviation in the number of events from the backgrounds expectation. The significance of deviation is calculated as$ \sigma = \frac{I_{i,j}-1}{\delta I_{i,j}} $ .In the fast simulation, the skymap contains
$ \gamma $ -rays from the sources and the diffuse emissions. However, the signal counts from the sources near the Galactic plane may have an underlying diffuse component. We adopt the likelihood ratio method to decompose the two components [11].$ {\cal{L}} = \ln \frac{{\cal{L}}({\rm signal\ model})}{{\cal{L}}({\rm Null{\ }model})} . $
In the analysis, the signal model considers the signal counts from two components,
$ M_{i,j} = $ $ N^{'}_{i,j} + N^{'}_f $ .$ N^{'}_{i,j} $ is the source contribution to the pixel$ (i,j) $ derived from the source flux and the detector response. The morphology of the point sources is described by PSF, and that of the extended sources can be characterized by the extended source shapes (2D Gaussian model) convoluted with PSF. To evaluate the maximum possible contribution of the diffuse emission to the source signal counts, we assume that$ N^{'}_f $ is a constant number for each pixel in a circular$ 3^\circ $ region of interest (ROI) centered on our source. Therefore, the signal likelihood is$ {\cal{L}}({\rm signal\; model})\! = \sum_{i,j} \ln P_{i,j}$ $\! (N_{i,j},N_{bkg i,j}\!+\!M_{i,j}) $ , where$ P_{i,j} $ is the Poisson probability of observing$ N_{i,j} $ counts given the expectation$ N_{bkg i,j}+M_{i,j} $ . As for the null model, the expectation only considers the background counts$ N_{bkg i,j} $ . We use the Minuit library [38] to maximize the likelihood ratio.
Prospects for a multi-TeV gamma-ray sky survey with the LHAASO water Cherenkov detector array
- Received Date: 2019-07-22
- Accepted Date: 2020-02-11
- Available Online: 2020-06-01
Abstract: The Water Cherenkov Detector Array (WCDA) is a major component of the Large High Altitude Air Shower Array Observatory (LHAASO), a new generation cosmic-ray experiment with unprecedented sensitivity, currently under construction. WCDA is aimed at the study of TeV