-
In the past several decades, the QCD sum rule has been used as a powerful non-perturbative approach to investigate the hadron properties, such as the hadron masses, magnetic moments, and decay widths [34, 35]. To study the dibaryon systems using QCD sum rules, we need to construct the
$ \Omega\Omega $ interpolating currents using the local Ioffe current for the$ \Omega $ baryon [36, 37]$ J_\mu^\Omega(x) = \epsilon^{abc}\left[s^T_a (x) C\gamma_\mu s_b (x) \right]s_c (x)\, , $
(1) in which
$ s(x) $ represents the strange quark field,$ a, b, c $ are the color indices,$ \gamma_\mu $ is the Dirac matrix,$ C = i\gamma_2\gamma_0 $ is the charge conjugation matrix, and T is the transpose operator. The$ \Omega\Omega $ dibaryon interpolating current is then composed in the molecular picture as$ \begin{aligned}[b] J^{\Omega\Omega}_{\mu\nu}(x) =& \epsilon^{abc}\epsilon^{def} \left[s^T_a (x) C\gamma_\mu s_b (x) \right]s^T_c (x) \cdot C\gamma_5 \\ &\cdot s_f (x) \left[s^T_d (x) C\gamma_\nu s_e (x) \right]\, . \end{aligned} $
(2) With this interpolating current, we consider the two-point correlation function for
$ \Omega\Omega $ dibaryon:$ \Pi_{\mu\nu,\,\rho\sigma}(q^2) = {\rm i} \int{\rm{d^4}} x \ {\rm{e}}^{{\rm i}q\cdot x} \left< 0 \left| {\rm{T}} \left\{ J^{\Omega\Omega}_{\mu\nu}(x) J^{\Omega\Omega\dagger}_{\rho\sigma}(0) \right\} \right| 0 \right>\, , $
(3) where
$ J^{\Omega\Omega}_{\mu\nu}(x) $ is symmetric and can, thus, couple to both the scalar and tensor dibaryon states that we are interested in:$ \langle0|J^{\Omega\Omega}_{\mu\nu}|X_0\rangle = f_{0}g_{\mu\nu}+f_qq_\mu q_\nu\,, $
(4) $ \langle0|J^{\Omega\Omega}_{\mu\nu}|X_T\rangle = f_{T} \epsilon_{\mu\nu}\, , $
(5) in which
$ f_0, f_q $ , and$ f_T $ are the coupling constants, and$ \epsilon_{\mu\nu} $ is the polarization tensor coupling to the spin-2 state. In addition to the$ \Omega\Omega $ dibaryon,$ J^{\Omega\Omega}_{\mu\nu} $ can also couple to the$ \Omega-\Omega $ scattering state with the same quantum numbers. In principle, one should consider both the genuine dibaryon and$ \Omega-\Omega $ scattering state contributions to the two-point correlation function in Eq. (3) on the hadron side. However, the contribution from the$ \Omega-\Omega $ scattering state cannot affect the hadron mass significantly, similar to the result for the tetraquark system [38]. We will not take this effect into account in our analyses.We use the following projectors to choose different invariant functions from
$ \Pi_{\mu\nu,\,\rho\sigma}(q^2) $ [39-41]$ \begin{aligned}[b]& P_{0T} = \frac{1}{16}g_{\mu\nu}g_{\rho\sigma}\, , \; \; \; \; \; \; \; {\rm{for}}\, J^P = 0^+,\, {\rm{T}}\\ &P_{0S} = T_{\mu\nu}T_{\rho\sigma}\, , \; \; \; \; \; \; \; \; \; \; {\rm{for}}\, J^P = 0^+,\, {\rm{S}}\\ & P_{0TS} = \frac{1}{4}(T_{\mu\nu}g_{\rho\sigma}+T_{\rho\sigma}g_{\mu\nu})\, , \; {\rm{for}}\, J^P = 0^+,\, {\rm{TS}}\\ &P_{2S}^P = \frac{1}{2}\left(\eta_{\mu\rho}\eta_{\nu\sigma}+\eta_{\mu\sigma}\eta_{\nu\rho}-\frac{2}{3}\eta_{\mu\nu}\eta_{\rho\sigma}\right)\, , \; {\rm{for}}\, J^P = 2^+,\, {\rm{S}} \end{aligned} $
(6) where
$ \begin{aligned}[b]\eta_{\mu\nu} & = \frac{q_\mu q_\nu}{q^2}-g_{\mu\nu}\, ,\quad\; T_{\mu\nu} = \frac{q_\mu q_\nu}{q^2}-\frac{1}{4}g_{\mu\nu}\, , \\ T_{\mu\nu,\rho\sigma}^\pm & = \left[\frac{q_\mu q_\rho}{q^2}\eta_{\nu\sigma}\pm(\mu\leftrightarrow\nu)\right]\pm(\rho\leftrightarrow\sigma)\, . \end{aligned} $
(7) Projectors
$ P_{0T} $ ,$ P_{0S} $ , and$ P_{0TS} $ in Eq. (6) can be used to select different invariant functions induced by the trace part (T), traceless symmetric part (S), and their cross term part (TS) from the tensor current, respectively, which all couple to the$ J^P = 0^+ $ channel with different coupling constants.At the hadronic level, the invariant structure of correlation function
$ \Pi(q^2) $ can be expressed as a dispersion relation:$ \Pi\left(q^{2}\right) = \left(q^{2}\right)^{N}\int_{0}^{\infty}{\rm{d}}s\frac{\rho\left(s\right)}{s^{N}\left(s-q^{2}-{\rm{i}}\epsilon\right)}+\sum\limits_{k = 0}^{N-1}b_{n}\left(q^{2}\right)^{k}\, , $
(8) where
$ b_n $ is an unknown subtraction constant. The spectral function is usually written as a sum over$ \delta $ function by inserting intermediate states$ |n\rangle $ with the same quantum numbers as the interpolating current:$ \begin{aligned}[b]\rho(s)\equiv & {\rm{Im}}\Pi\left(s\right)/\pi = \sum\limits_{n}\delta(s-m^{2}_{n})\langle0|J|n\rangle\langle n|J^{\dagger}|0\rangle\\ =& f^{2}_{X}\delta(s-m^{2}_{X})+{\rm{continuum}} \; , \end{aligned}$
(9) where we adopt the “narrow resonance” approximation to describe the spectral function, and
$ m_{X} $ is the mass of the lowest-lying resonance X.Using the operator product expansion (OPE) method, the correlation functions can also be calculated as functions of various QCD condensates at the quark-gluonic level. These results are equal to the correlation function in Eq. (8) via the quark-hadron duality. After performing the Borel transform to remove the unknown subtraction constants and suppress the continuum contributions, we establish the QCD sum rules regarding the hadron mass:
$ \Pi(s_0,\, M_B^2) = f_X^2 {\rm e}^{-m_X^2/M_B^2} = \int_{<}^{s_0}{\rm d} s {\rm e}^{-s/M_B^2}\rho(s)\, , $
(10) in which
$ s_{0} $ is the continuum threshold, and$ M_{B} $ is the Borel mass. Then, we can calculate the hadron mass as$ m^{2}_X\left(s_0,\, M_B^2\right) = \frac{\displaystyle\int_{<}^{s_{0}}{\rm d}s\,s\rho\left(s\right){\rm e}^{-s/M_{B}^{2}}}{\displaystyle\int_{<}^{s_{0}}{\rm d}s\,\rho\left(s\right){\rm e}^{-s/M_{B}^{2}}}\, , $
(11) in which spectral density
$ \rho(s) $ is evaluated at the quark-gluonic level as a function of various QCD condensates up to dimension-16, including the quark condensate$ \langle \bar ss\rangle $ , quark-gluon mixed condensate$ \langle g_s\bar s\sigma\cdot Gs\rangle $ , and gluon condensate$ \langle g_s^2GG\rangle $ . We keep the quark condensate and quark-gluon mixed condensate proportional to$ m_s $ , which will yield important contributions in the OPE series. The expressions of spectral densities are lengthy; thus, we have presented them in the appendix. -
We use the following values for various QCD parameters in our numerical analyses [42-49]:
$ \begin{array}{*{20}{l}} {\left\langle {\bar ss} \right\rangle }&{ - (0.8 \pm 0.1) \times {{(0.24 \pm 0.03)}^3}{\mkern 1mu} {\rm{Ge}}{{\rm{V}}^3}}\\ {\left\langle {g_s^2GG} \right\rangle }&{(0.48 \pm 0.14){\mkern 1mu} {\rm{Ge}}{{\rm{V}}^4}}\\ {\left\langle {{g_s}\bar s\sigma Gs} \right\rangle }&{ - M_0^2\left\langle {\bar ss} \right\rangle }\\ {M_0^2}&{(0.8 \pm 0.2){\mkern 1mu} {\rm{Ge}}{{\rm{V}}^2}}\\ {{{m_s}}}&{95_{ - 3}^{ + 9}{\mkern 1mu} {\rm{MeV}}} \end{array}$
(12) We shall first investigate the trace part (T) of
$ J^{\Omega\Omega}_{\mu\nu}(x) $ to study the scalar$ \Omega\Omega $ dibaryon. Before performing the mass sum rule analysis, we study the behaviors of the spectral densities for the trace part, the traceless symmetric part, and the tensor part. We show these spectral densities in Fig. 1 as three solid lines. It is clear that the spectral density of the trace part for the scalar channel is negative in a broad region of 2 GeV$ ^2 $ $ \leqslant s\leqslant 12 $ GeV$ ^2 $ . This behavior of the spectral density is distinct from those of the traceless symmetric part (S) for the scalar channel and the tensor channel, as shown in Fig. 1. To eliminate this negative effect, we consider the violation of factorization assumption by varying the four-quark condensate$ \langle\bar s\bar sss\rangle = \kappa \left< \bar s s \right>^2 $ [35]. Because the factorization assumption for the high dimensional condensate ($ D>6 $ ) is not precise and unclear, we shall consider the impact of$ \kappa $ if the condensates can be reduced to four-quark condensates, for example,$ \langle\bar{s}\bar{s}\bar{s}sss\rangle \to \langle\bar{s}s\rangle\kappa\langle\bar{s}s\rangle^2 = \kappa\langle\bar{s}s\rangle^3 $ . The numerical values of the gluon condensate and quark-gluon mixed condensate are also provided in Eq. (12). In the case of the$ J^P = 0^+ $ (T) channel, the factor is naturally taken as$ \kappa = 2 $ . In the case of the$ J^P = 0^+ $ (S) channel, the behavior of the spectral density is good enough for$ \kappa = 1.7 $ of the factorization assumption, as shown in Fig. 1. However, we set$ \kappa = 1 $ for the$ J^P = 2^+ $ tensor channel because its spectral density is positive in most of the parameter region. To avoid overestimation of the uncertainty of the four-quark condensate, we shall use the fixed value of$ \kappa $ and not consider it as an error source for the mass prediction in our following numerical analyses.Figure 1. (color online) Behaviors of the spectral densities for all channels. The solid lines represent the spectral densities for
$\kappa=1$ , whereas the dashed lines are the corresponding densities considering the effect of factorization assumption.In Eq. (11), the hadron mass is extracted as a function of two free parameters: the Borel mass,
$ M_B $ , and the continuum threshold,$ s_0 $ . For the numerical analysis, we study the OPE convergence to determine the lower bound on Borel mass$ M_B $ , requiring the contributions from the dimension-16 condensates to be less than 5%. For the trace part (T) of the scalar channel, we list the two-point correlation function numerically as$ \begin{aligned}[b] \Pi (\infty,\, M_B^2) =& 6.98 \times 10^{-12} M_B^{16} + 2.61 \times 10^{-11} M_B^{12} \\ &+ 3.93 \times 10^{-10} M_B^{10}- 9.18 \times 10^{-10} M_B^8 \\&+ 6.45 \times 10^{-10} M_B^6 + 6.21 \times 10^{-10} M_B^4 \\&- 1.23 \times 10^{-9} M_B^2 + 5.38 \times 10^{-10} \, , \end{aligned}$
(13) in which we take
$ s_0\to\infty $ . According to the above criteria, the lower bound on the Borel mass can be obtained as$ M_B^2\geqslant 2.1 $ GeV$ ^2 $ . Conversely, the upper bound on the Borel mass can be obtained by studying the pole contribution. Requiring the pole contribution to be larger than 10%, we find the upper bound on the Borel mass to be$ M_B^2\leqslant 2.9 $ GeV$ ^2 $ . Finally, the reasonable working region of the Borel mass is 2.1 GeV$ ^2 $ $ \leqslant M_B^2\leqslant 2.9 $ GeV$ ^2 $ .For continuum threshold
$ s_0 $ , an optimized choice is the value minimizing the variation of the hadron mass with the Borel mass. As shown in Fig. 2, we plot the variation of the extracted hadron mass with respect to continuum threshold$ s_0 $ for the scalar trace part with$ J^P = 0^+ $ (T). We determine the working region of the continuum threshold to be 13.8 GeV$ ^2 $ $ \leqslant s_0\leqslant 14.8 $ GeV$ ^2 $ .Within these parameter regions, we plot the Borel curves of the extracted hadron mass in Fig. 2. These Borel curves demonstrate good stability and give the mass prediction of the scalar
$ \Omega\Omega $ dibaryon with$ J^P = 0^+ $ (T) as$ m_{\Omega\Omega,\, 0^+,{\rm{T}}} = (3.33\pm 0.50)\, {\rm{GeV}}\, , $
(14) in which the errors come from the uncertainties of
$ M_B $ ,$ s_0 $ , and various QCD parameters in Eq. (12). The corresponding coupling constant can be evaluated as$ f_{\Omega\Omega,\, 0^+,{\rm{T}}} = \left( 10.10\pm 5.44 \right) \times 10^{-4}\, {\rm{GeV}}^8\, . $
(15) As indicated in Eq. (6), the traceless symmetric part (S) and cross term (TS) in the tensor correlation function
$ \Pi_{\mu\nu,\,\rho\sigma}(q^2) $ can also couple to the scalar$ \Omega\Omega $ channel with$ J^P = 0^+ $ . A similar analysis is performed for the traceless symmetric part of the scalar channel. The Borel curves are shown in Fig. 3, and the numerical results are$ m_{\Omega\Omega,\, 0^+,{\rm{S}}} = (3.33\pm 0.52)\, {\rm{GeV}}\, , $
(16) $ f_{\Omega\Omega,\, 0^+,{\rm{S}}} = \left( 6.25\pm 1.60 \right) \times 10^{-4}\, {\rm{GeV}}^8\, . $
(17) We collect the numerical results for both the trace part and the traceless symmetric part in Table 1. In the case of the cross term (TS), the perturbative term in the OPE series is absent; hence, we will not use this invariant structure to study the scalar dibaryon.
${\rm{mass}}/{\rm{GeV}}$ ${\rm{coupling}}/10^{-4}\,{\rm{GeV}}^8$ pole contribution $\kappa$ $s_0/{\rm{GeV}}^2$ $M_B^2/{\rm{GeV}}^2$ $(0^+, T)$ $3.33\pm 0.50$ $10.10\pm 5.44$ 39% $2.0$ $[13.8, 14.8]$ $[2.1, 2.9]$ $(0^+, S)$ $3.33\pm 0.52$ $6.25\pm 1.60$ 43% $1.7$ $[14.2, 15.2]$ $[2.1, 3.3]$ $(2^+, S)$ $3.15\pm 0.33$ $9.01\pm 6.60$ 20% $1.0$ $[14.6, 15.6]$ $[2.5, 3.0]$ Table 1. Numerical results for the trace part (T), traceless symmetric part (S) with
$J^P=0^+$ , and tensor part with$J^P=2^+$ .Considering both the trace part and the traceless symmetric part, we obtain the mass and coupling constant for the scalar
$ \Omega\Omega $ dibaryon with$ J^P = 0^+ $ $ m_{\Omega\Omega,\, 0^+} = (3.33\pm 0.51)\, {\rm{GeV}}\, , $
(18) $ f_{\Omega\Omega,\, 0^+} = \left( 8.40\pm4.01 \right) \times 10^{-4}\, {\rm{GeV}}^8\, . $
(19) This obtained hadron mass is approximately 15 MeV below the threshold of
$ 2m_{\Omega}\approx 3345 $ MeV [42], suggesting the possibility of the existence of a loosely bound molecular state of the scalar$ \Omega\Omega $ dibaryon. The central value of our prediction on the binding energy is in good agreement with the recent HAL QCD result [32], even though it is much smaller than the chiral SU(3) quark model calculation [30]. -
To investigate the tensor
$ \Omega\Omega $ dibaryon state, we use projector$ P_{2S}^P $ in Eq. (6) to pick out the tensor invariant structure in$ \Pi_{\mu\nu,\,\rho\sigma}(q^2) $ . Using this invariant function, we perform a similar analysis to that performed for the scalar channels. As emphasized above, we use$ \kappa = 1.0 $ for the tensor spectral density in our analysis.We find the parameter working regions to be 2.5 GeV
$ ^2 $ $ \leqslant M_B^2 \leqslant 3.0 $ GeV$ ^2 $ and 14.6 GeV$ ^2 $ $ \leqslant s_0\leqslant 15.6 $ GeV$ ^2 $ for the Borel mass and continuum threshold, respectively. The mass curves depending on$ s_0 $ and$ M_B^2 $ for the tensor channel are accordingly plotted in Fig. 4. Obviously, the mass sum rules are reliable in the above parameter working regions. We obtain the mass for the tensor$ \Omega\Omega $ dibaryon with$ J^P = 2^+ $ $ m_{\Omega\Omega,\, 2^+} = (3.15\pm0.33)\, {\rm{GeV}}\, , $
(20) and the coupling constant
$ f_{\Omega\Omega,\, 2^+} = \left( 9.01\pm 6.60 \right) \times 10^{-4} \, {\rm{GeV}}^8\, . $
(21) The predicted dibaryon mass in Eq. (20) is also below the
$ 2m_\Omega $ threshold, which is even lower than the mass of the scalar$ \Omega\Omega $ dibaryon in Eq. (18). This result is different from the weakly repulsive interaction for the tensor$ \Omega\Omega $ system obtained by the lattice QCD calculation with a pion mass of 390 MeV in Ref. [31]. -
We calculate the spectral densities for the trace part (T), traceless symmetric part (S), cross term part (TS), and tensor part up to dimension-16 condensates and collect all of them as follows:
● For the trace part (
$ J^P = 0^+ $ , T),$\tag{A1} \begin{aligned}[b] \rho(s) =& \frac{27 s^7 }{ 7! 7! 2^{13} \pi^{10}} -\frac{21 m_s \left< \bar s s \right> s^5}{5! 5! 2^9 \pi^8} -\frac{ \left< g_s^2 GG \right> s^5}{5^2 2^{21} \pi^{10}} +\frac{ \left< \bar s s \right>^2 s^4}{3 \times 2^{12} \pi^6} -\frac{m_s \left< g_s \bar s \sigma G s \right> s^4}{5 \times 2^{12} \pi^8} +\frac{3 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s^3}{2^{11} \pi^6} +\frac{11 m_s \left< g_s^2 GG \right> \left< \bar s s \right> s^3}{3^2 2^{14} \pi^8} \\& -\frac{5 m_s \left< \bar s s \right>^3 s^2}{3! 2^4 \pi^4} -\frac{13 \left< g_s^2 GG \right> \left< \bar s s \right>^2 s^2}{3^2 2^{11} \pi^6} +\frac{13 \left< g_s \bar s \sigma G s \right>^2 s^2}{2^{12} \pi^6} +\frac{5 m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> s^2}{2^{14} \pi^8} +\frac{5 \left< \bar s s \right>^4 s}{24 \pi^2} \\ & -\frac{17 m_s \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 s}{48 \pi^4} -\frac{9 \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s}{2^{12} \pi^6} +\frac{m_s \left< \bar s s \right> \left< g_s^2 GG \right>^2 s}{2^{14} \pi^8} +\frac{7 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^3}{12 \pi^2} -\frac{m_s \left< g_s^2 GG \right> \left< \bar s s \right>^3}{144 \pi^4} \\ & -\frac{97 m_s \left< \bar s s \right> \left< g_s \bar s \sigma G s \right>^2}{3 \times 2^7 \pi^4} -\frac{67 \left< \bar s s \right>^2 \left< g_s^2 GG \right>^2}{3^3 2^{14} \pi^6} -\frac{3 \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right>^2}{2^{12} \pi^6} +\frac{5 \left< g_s^2 GG \right> \left< \bar s s \right>^4 \delta (s)}{3^3 2^6 \pi ^2} +\frac{9 \left< g_s \bar s \sigma G s \right>^2 \left< \bar s s \right>^2 \delta (s)}{32 \pi ^2} \\ & -\frac{29 m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 \delta (s)}{3^3 2^8 \pi ^4} -\frac{11 m_s \left< g_s \bar s \sigma G s \right>^3 \delta (s)}{3 \times 2^7 \pi ^4} -\frac{ \left< g_s^2 GG \right>^2 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> \delta (s)}{3 \times 2^{13} \pi ^6} -\frac{m_s \left< \bar s s \right>^5 \delta (s)}{9} \, . \end{aligned} $
● For the traceless symmetric part (
$ J^P = 0^+ $ , S),$\tag{A2} \begin{aligned}[b] \rho(s) =& \frac{3 s^7 }{ 7! 7! 2^{12} \pi^{10}} -\frac{57 m_s \left< \bar s s \right> s^5}{5 \times 7! 2^{11} \pi^8} -\frac{ \left< g_s^2 GG \right> s^5}{5! 5! 2^{14} \pi^{10}} +\frac{3 \left< \bar s s \right>^2 s^4}{7! 2^{5} \pi^6} -\frac{23 m_s \left< g_s \bar s \sigma G s \right> s^4}{3 \times 7! 2^{7} \pi^8} +\frac{5 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s^3}{3^3 2^{10} \pi^6} +\frac{17 m_s \left< g_s^2 GG \right> \left< \bar s s \right> s^3}{3 \times 6! 2^{7} \pi^8} \\ & -\frac{5 m_s \left< \bar s s \right>^3 s^2}{3^2 2^3 \pi^4} -\frac{ \left< g_s^2 GG \right> \left< \bar s s \right>^2 s^2}{3^2 2^{8} \pi^6} +\frac{m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> s^2}{3 \times 2^{11} \pi^8} +\frac{ \left< \bar s s \right>^4 s}{9 \pi^2} -\frac{25 m_s \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 s}{64 \pi^4} \\ &-\frac{83 \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s}{3^4 2^{10} \pi^6} +\frac{25 m_s \left< \bar s s \right> \left< g_s^2 GG \right>^2 s}{3^4 2^{14} \pi^8} +\frac{17 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^3}{3^3 2^2 \pi^2} \! +\!\frac{19 m_s \left< g_s^2 GG \right> \left< \bar s s \right>^3}{3^4 2^6 \pi^4} -\frac{7\! \times \!71 \, m_s \left< \bar s s \right> \left< g_s \bar s \sigma G s \right>^2}{3^3 2^{7} \pi^4} \\ & -\frac{5 \left< \bar s s \right>^2 \left< g_s^2 GG \right>^2}{3^5 2^{10} \pi^6} -\frac{ \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right>^2}{3 \times 2^{12} \pi^6} -\frac{ \left< g_s^2 GG \right> \left< \bar s s \right>^4 \delta (s)}{2^2 3^3 \pi^2} -\frac{7 \left< g_s \bar s \sigma G s \right>^2 \left< \bar s s \right>^2 \delta (s)}{48 \pi^2} +\frac{13 m_s \left< g_s \bar s \sigma G s \right>^3 \delta (s)}{3 \times 2^7 \pi^4} \\ & +\frac{13 \times 23 \, m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 \delta (s)}{3^3 2^9 \pi^4} +\frac{ \left< g_s^2 GG \right>^2 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> \delta (s)}{3^3 2^{13} \pi^6} -\frac{20 m_s \left< \bar s s \right>^5 \delta (s)}{27}\, . \end{aligned} $
● For the cross term part (
$ J^P = 0^+ $ , TS),$\tag{A3} \begin{aligned}[b] \rho(s) =& \frac{m_s \left< \bar s s \right> s^5}{35 \times 2^{12} \pi^8} +\frac{3 \left< g_s^2 GG \right> s^5}{7! 2^{15} \pi^{10}} -\frac{ \left< \bar s s \right>^2 s^4}{5! 2^{6} \pi^6} +\frac{13 m_s \left< g_s \bar s \sigma G s \right> s^4}{3^2 2^{14} \pi^8} -\frac{13 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s^3}{3 \times 2^{11} \pi^6} -\frac{31 m_s \left< g_s^2 GG \right> \left< \bar s s \right> s^3}{5! 2^{11} \pi^8} \\ & +\frac{m_s \left< \bar s s \right>^3 s^2}{2^4 \pi^4} +\frac{31 \left< g_s^2 GG \right> \left< \bar s s \right>^2 s^2}{3^2 2^{12} \pi^6} -\frac{47 \left< g_s \bar s \sigma G s \right>^2 s^2}{3 \times 2^{12} \pi^6} -\frac{13 m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> s^2}{2^{15} \pi^8} -\frac{ \left< \bar s s \right>^4 s}{6 \pi^2} \\ & +\frac{109 m_s \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 s}{3 \times 2^7 \pi^4} +\frac{193 \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s}{3^3 2^{12} \pi^6} -\frac{43 m_s \left< \bar s s \right> \left< g_s^2 GG \right>^2 s}{3^3 2^{15} \pi^8} +\frac{23 \left< g_s^2 GG \right> \left< \bar s s \right>^4 \delta (s)}{3^3 2^5 \pi^2} \\ & +\frac{65 \left< g_s \bar s \sigma G s \right>^2 \left< \bar s s \right>^2 \delta (s)}{96 \pi^2} -\frac{19 \times 79 m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 \delta (s)}{3^3 2^{10} \pi^4} -\frac{53 m_s \left< g_s \bar s \sigma G s \right>^3 \delta (s)}{3 \times 2^8 \pi^4} \\ & -\frac{43 \left< g_s^2 GG \right>^2 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> \delta (s)}{3^3 2^{14} \pi ^6} +\frac{4 m_s \left< \bar s s \right>^5 \delta (s)}{3}\, . \end{aligned} $
● For the tensor part (
$ J^P = 2^+ $ , S),$ \tag{A4} \begin{aligned}[b]\rho(s) =& \frac{3 s^7 }{ 7! 7! 2^{7} \pi^{10}} +\frac{47 m_s \left< \bar s s \right> s^5}{7! 2^9 \pi^8} -\frac{19 \left< g_s^2 GG \right> s^5}{3 \times 7! 2^{14} \pi^{10}} -\frac{5 \left< \bar s s \right>^2 s^4}{7 \times 3^3 2^{7} \pi^6} +\frac{25 m_s \left< g_s \bar s \sigma G s \right> s^4}{7 \times 3^4 2^{8} \pi^8} -\frac{19 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s^3}{3^4 2^{6} \pi^6} \\ & -\frac{13 m_s \left< g_s^2 GG \right> \left< \bar s s \right> s^3}{3^4 2^{10} \pi^8} -\frac{25 m_s \left< \bar s s \right>^3 s^2}{3^3 2^2 \pi^4} -\frac{ \left< g_s^2 GG \right> \left< \bar s s \right>^2 s^2}{3^3 2^{7} \pi^6} -\frac{37 \left< g_s \bar s \sigma G s \right>^2 s^2}{3^2 2^{9} \pi^6} -\frac{19 m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> s^2}{3^3 2^{11} \pi^8} \\ & +\frac{10 \left< \bar s s \right>^4 s}{27 \pi^2} -\frac{5 \times 43 m_s \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 s}{2^2 3^3 \pi^4} -\frac{5 \times 59 \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> s}{3^5 2^{9} \pi^6} +\frac{5 m_s \left< \bar s s \right> \left< g_s^2 GG \right>^2 s}{3^5 2^{11} \pi^8} \\ & +\frac{170 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^3}{81 \pi^2} +\frac{95 m_s \left< g_s^2 GG \right> \left< \bar s s \right>^3}{3^5 2^3 \pi^4} -\frac{71 \times 35 m_s \left< \bar s s \right> \left< g_s \bar s \sigma G s \right>^2}{2^4 3^4 \pi^4} -\frac{25 \left< \bar s s \right>^2 \left< g_s^2 GG \right>^2}{3^6 2^{7} \pi^6} \\ & -\frac{5 \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right>^2}{3^2 2^{9} \pi^6} +\frac{5 \left< g_s^2 GG \right> \left< \bar s s \right>^4 \delta (s)}{162 \pi^2} +\frac{5 \left< g_s \bar s \sigma G s \right>^2 \left< \bar s s \right>^2 \delta (s)}{2 \pi^2} -\frac{55 m_s \left< g_s \bar s \sigma G s \right>^3 \delta (s)}{3^2 2^4 \pi^4} \\ & -\frac{5 m_s \left< g_s^2 GG \right> \left< g_s \bar s \sigma G s \right> \left< \bar s s \right>^2 \delta (s)}{81 \pi^4} -\frac{5 \left< g_s^2 GG \right>^2 \left< g_s \bar s \sigma G s \right> \left< \bar s s \right> \delta (s)}{3^4 2^{8} \pi^6} -\frac{80 m_s \left< \bar s s \right>^5 \delta (s)}{81}\, . \end{aligned} $
Exotic ΩΩ dibaryon states in a molecular picture
- Received Date: 2020-11-22
- Available Online: 2021-04-15
Abstract: We investigate the exotic