Scalar neutrino dark matter in the BLMSSM

Cited by

1. Xiao, Y.-Q., Liu, Z.-K., Chen, S.-L. A note on the interplay of neutrino and dark matter physics | [中微子和暗物质物理的关联研究][J]. Scientia Sinica: Physica, Mechanica et Astronomica, 2023, 53(9): 290005. doi: 10.1360/SSPMA-2023-0162

Figures(11) / Tables(1)

Get Citation
Ming-Jie Zhang, Shu-Min Zhao, Xing-Xing Dong, Zhong-Jun Yang and Tai-Fu Feng. Scalar neutrino dark matter in BLMSSM[J]. Chinese Physics C. doi: 10.1088/1674-1137/ac0c0e
Ming-Jie Zhang, Shu-Min Zhao, Xing-Xing Dong, Zhong-Jun Yang and Tai-Fu Feng. Scalar neutrino dark matter in BLMSSM[J]. Chinese Physics C.  doi: 10.1088/1674-1137/ac0c0e shu
Milestone
Received: 2021-04-19
Article Metric

Article Views(1425)
PDF Downloads(22)
Cited by(1)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Scalar neutrino dark matter in the BLMSSM

    Corresponding author: Ming-Jie Zhang, 1070102415@qq.com
    Corresponding author: Shu-Min Zhao, zhaosm@hbu.edu.cn
    Corresponding author: Xing-Xing Dong, dxx_0304@163.com
  • 1. Department of Physics, Hebei University, Baoding 071002, China
  • 2. Key Laboratory of High-precision Computation and Application of Quantum Field Theory of Hebei Province, Baoding 071002, China
  • 3. Department of Physics, Chongqing University, Chongqing 401331, China

Abstract: The BLMSSM is an extension of the minimal supersymmetric standard model (MSSM). Its local gauge group is SU(3)C×SU(2)L×U(1)Y×U(1)B×U(1)L. Supposing the lightest scalar neutrino is a dark matter candidate, we study the relic density and the spin independent cross section of sneutrino scattering off a nucleon. We calculate the numerical results in detail and find a suitable parameter space. The numerical discussion can confine the parameter space and provide a reference for dark matter research.

    HTML

    I.   INTRODUCTION
    • Since it was first proposed in the 1920s, the existence of dark matter has been confirmed by many observations and experiments. In particular, the explanations of galaxy rotation curves [1, 2], gravitational lensing, and cosmic microwave background radiation have made dark matter widely accepted by many physicists. Researchers have thus paid more attention to dark matter research.

      The neutrinos in the SM have hot dark matter characteristics, but the large scale structure of the universe supports the idea that cold dark matter is dominant. Therefore, the SM cannot provide a cold dark matter candidate. Although the SM has achieved great success with the detection of the 125 GeV Higgs boson, it has some shortcomings, such as the hierarchy problem, CP-violating problem, and neutrino with zero mass. Therefore, we consider extending the SM; the MSSM [3-5] is one choice of many supersymmetric models. However, the MSSM still fails to explain neutrino oscillation experiments, and its reasonable parameter space constrained by the experiments becomes increasingly smaller. Therefore, we need to expand the MSSM.

      The BLMSSM [6-9] is an extension of the MSSM with local gauged B and L, whose local gauge group is SU(3)C×SU(2)L×U(1)Y×U(1)B×U(1)L and spontaneously broken at the TeV scale. The local gauged B can explain the asymmetry of matter-antimatter in the universe. At the same time, the local gauged L can improve the lepton flavor violating effect and give light neutrinos small mass with right handed neutrinos through the see-saw mechanism. The small hierarchy problem in the MSSM is relieved in the BLMSSM by exotic quarks and exotic leptons, which are introduced to eliminate the gauge anomalies. The BLMSSM can provide a new dark matter candidate beyond the MSSM. Therefore, we choose to use the BLMSSM to study dark matter.

      In current dark matter research, there are many dark matter candidates. They include massive compact halo objects (MACHOs) [10-12], primordial black holes, neutrinos, axions, and weakly-interacting massive particles (WIMPs) [13-17]. They all satisfy or partially satisfy the following conditions: no electric charge and no color charge, remaining stable, and possessing a long life [18, 19]. These characteristics could explain the observed large scale structure of the universe. Thus, cold dark matter is favored.

      In the MSSM, the scalar neutrinos are only left-handed and interact with gauge bosons at tree level. This model cannot satisfy the constraints present from the relic density or direct detection experiments because of the large cross section. The introduced right-handed neutrinos are inactive and stable. The sneutrinos are electric and color neutral. If the lightest mass eigenstate of the sneutrino mass squared matrix is the lightest supersymmetric particle (LSP), and its dominant element is the right-handed sneutrino, it will be a good dark matter candidate. The reason is that it can easily satisfy the experimental restrictions from dark matter direct detection and give reasonable relic density. Eventually, the lightest scalar neutrino is adopted as a candidate for dark matter in this paper. There are other studies of sneutrino dark matter in extensions of the MSSM [20-27].

      After this introduction, we show the main contents of the BLMSSM in section II. Sections III and IV are devoted to the equations of relic density and direct detection. We calculate the numerical results and find a reasonable parameter space in the BLMSSM in section V. The discussion and conclusion are provided in section VI.

    II.   THE BLMSSM
    • The detection of the lightest CP-even Higgs at LHC [28-30] has proved that the SM can achieve great success. Extending the MSSM with the local gauge group SU(3)C×SU(2)L×U(1)Y×U(1)B×U(1)L, physicists have obtained the BLMSSM [6, 7]. Exotic leptons and exotic quarks are respectively introduced to cancel the L and B anomalies. The superfields in the BLMSSM are shown in Table 1. The Higgs superfields (two doublets and four singlets) obtain nonzero vacuum expectation values (VEVs). Therefore, they break both the lepton number and baryon number spontaneously.

      superfields SU(3)C SU(2)L U(1)Y U(1)B U(1)L
      ˆQ 3 2 1/6 1/3 0
      ˆUc ˉ3 1 −2/3 −1/3 0
      ˆDc ˉ3 1 1/3 −1/3 0
      ˆL 1 2 −1/2 0 1
      ˆEc 1 1 1 0 −1
      ˆNc 1 1 0 0 −1
      ˆQ4 3 2 1/6 B4 0
      ˆUc4 ˉ3 1 −2/3 B4 0
      ˆDc4 ˉ3 1 1/3 B4 0
      ˆL4 1 2 −1/2 0 L4
      ˆEc4 1 1 1 0 L4
      ˆNc4 1 1 0 0 L4
      ˆQc5 ˉ3 2 −1/6 1B4 0
      ˆU5 3 1 2/3 1+B4 0
      ˆD5 3 1 −1/3 1+B4 0
      ˆLc5 1 2 1/2 0 3L4
      ˆE5 1 1 −1 0 3+L4
      ˆN5 1 1 0 0 3+L4
      ˆHu 1 2 1/2 0 0
      ˆHd 1 2 −1/2 0 0
      ˆΦB 1 1 0 1 0
      ˆφB 1 1 0 −1 0
      ˆΦL 1 1 0 0 −2
      ˆφL 1 1 0 0 2
      ˆX 1 1 0 2/3+B4 0
      ˆX 1 1 0 2/3B4 0

      Table 1.  Superfields in the BLMSSM.

      After the Higgs obtain VEVs, the local gauge symmetry SU(2)LU(1)YU(1)BU(1)L breaks down to the electromagnetic symmetry U(1)e. If we mark the nonzero VEVs of the SU(2)L singlets ΦB,φB,ΦL,φL and the SU(2)L doublets Hu,Hd as υB,¯υB,υL,¯υL,υu, and υd, we have

      Hu=(H+u12(υu+H0u+iP0u)),Hd=(12(υd+H0d+iP0d)Hd),ΦB=12(υB+Φ0B+iP0B),φB=12(¯υB+φ0B+i¯P0B),ΦL=12(υL+Φ0L+iP0L),φL=12(¯υL+φ0L+i¯P0L).

      (1)

      The superpotential of the BLMSSM is [8]

      WBLMSSM=WMSSM+WB+WL+WX,WB=λQˆQ4ˆQc5ˆΦB+λUˆUc4ˆU5ˆφB+λDˆDc4ˆD5ˆφB+μBˆΦBˆφB+Yu4ˆQ4ˆHuˆUc4+Yd4ˆQ4ˆHdˆDc4+Yu5ˆQc5ˆHdˆU5+Yd5ˆQc5ˆHuˆD5,WL=Ye4ˆL4ˆHdˆEc4+Yν4ˆL4ˆHuˆNc4+Ye5ˆLc5ˆHuˆE5+Yν5ˆLc5ˆHdˆN5+YνˆLˆHuˆNc+λNcˆNcˆNcˆφL+μLˆΦLˆφL,WX=λ1ˆQˆQc5ˆX+λ2ˆUcˆU5ˆX+λ3ˆDcˆD5ˆX+μXˆXˆX,

      (2)

      where WMSSM is the superpotential of the MSSM. The soft breaking terms Lsoft of the BLMSSM can be written as [8].

      Lsoft=LMSSMsoft(m2˜Nc)IJ˜NcI˜NcJm2˜Q4˜Q4˜Q4m2˜U4˜Uc4˜Uc4m2˜D4˜Dc4˜Dc4m2˜Q5˜Qc5˜Qc5m2˜U5˜U5˜U5m2˜D5˜D5˜D5m2˜L4˜L4˜L4m2˜ν4˜Nc4˜Nc4m2˜e4˜Ec4˜Ec4m2˜L5˜Lc5˜Lc5m2˜ν5˜N5˜N5m2˜e5˜E5˜E5m2ΦBΦBΦBm2φBφBφBm2ΦLΦLΦLm2φLφLφL(mBλBλB+mLλLλL+h.c.)+{Au4Yu4˜Q4Hu˜Uc4+Ad4Yd4˜Q4Hd˜Dc4+Au5Yu5˜Qc5Hd˜U5+Ad5Yd5˜Qc5Hu˜D5+ABQλQ˜Q4˜Qc5ΦB+ABUλU˜Uc4˜U5φB+ABDλD˜Dc4˜D5φB+BBμBΦBφB+h.c.}+{Ae4Ye4˜L4Hd˜Ec4+Aν4Yν4˜L4Hu˜Nc4+Ae5Ye5˜Lc5Hu˜E5+Aν5Yν5˜Lc5Hd˜N5+ANYν˜LHu˜Nc+ANcλNc˜Nc˜NcφL+BLμLΦLφL+h.c.}+{A1λ1˜Q˜Qc5X+A2λ2˜Uc˜U5X+A3λ3˜Dc˜D5X+BXμXXX+h.c.}.

      (3)

      LMSSMsoft denote the soft breaking terms of the MSSM.

      The elements of the mass squared matrix of a sneutrino read as [ 9]

      M2˜n(˜νI˜νJ)=g21+g228(v2dv2u)δIJ+g2L(ˉv2Lv2L)δIJ+v2u2(YνYν)IJ+(m2˜L)IJ,M2˜n(˜NcI˜NcJ)=g2L(ˉv2Lv2L)δIJ+v2u2(YνYν)IJ+2ˉv2L(λNcλNc)IJ+(m2˜Nc)IJ+μLvL2(λNc)IJˉvL2(ANc)IJ(λNc)IJ,M2˜n(˜νI˜NcJ)=μvd2(Yν)IJvuˉvL(YνλNc)IJ+vu2(AN)IJ(Yν)IJ.

      (4)

      The scalar neutrino mass squared matrix is diagonalized by the matrix Z˜ν [31]. The lightest mass eigenstate of the scalar neutrino is considered to be dark matter in this work.

      With the introduced superfields ˆNc, three neutrinos obtain tiny masses through the see-saw mechanism. The mass matrix of neutrinos is shown in the basis (ψνIL,ψNcIR),

      ZNν(0vu2(Yν)IJvu2(YTν)IJˉvL2(λNc)IJ)ZNν=diag(mνα),α=16,I,J=1,2,3,ψνIL=ZIαNνk0Nα,ψNcIR=Z(I+3)αNνk0Nα,χ0Nα=(k0Nαˉk0Nα),

      (5)

      where χ0Nα represents the mass eigenstates of neutrino fields.

      In the BLMSSM, the mass squared matrix of the slepton reads as

      ((M2L)LL(M2L)LR(M2L)LR(M2L)RR).

      (6)

      (M2L)LL, (M2L)LR, and (M2L)RR are shown here

      (M2L)LL=(g21g22)(v2dv2u)8δIJ+g2L(ˉv2Lv2L)δIJ+m2lIδIJ+(m2ˉL)IJ,(M2L)LR=μvu2(Yl)IJvu2(Al)IJ+vd2(Al)IJ,(M2L)RR=g21(v2uv2d)4δIJg2L(ˉv2Lv2L)δIJ+m2lIδIJ+(m2˜R)IJ.

      (7)

      We rotate this mass squared matrix to the mass eigenstates through the unitary matrix Z˜L.

      Some couplings are shown here. The couplings of the W-lepton-neutrino and Z-neutrino-neutrino are different from those in the MSSM, and their concrete forms are

      LWlν=e2sWW+μ3I=16α=1ZIαNνˉχ0NαγμPLlI+h.c.,LZνν=e2sWcWZμ3I=16α,β=1ZIαNνZIβNνˉχ0NαγμPLχ0Nβ+h.c.,

      (8)

      where sW(cW) represents sinθW(cosθW). θW is the Weinberg angle.

      The Z-sneutrino-sneutrino coupling is deduced as

      LZ˜ν˜ν=e2sWcWZμ3I=16i,j=1ZIi˜νZIj˜ν˜νii(μμ)˜νj.

      (9)

      We also obtain the chargino-lepton-sneutrino and neutralino-neutrino-sneutrino couplings

      Lχ±l˜ν=3I=16i=12j=1ˉχj(YIlZ2jZIi˜νPR+[esWZ1j+ZIi˜ν+YIiνZ2j+Z(I+3)i˜ν]PL)lI˜νi+h.c.,Lχ0ν˜ν=3I,J=14i=16α,k=1ˉχ0i(e2sWcW(Z1iNsWZ2iNcW)ZIk˜νZIαNν+YIJν2Z4iN(ZIαNνZ(J+3)k˜ν+Z(I+3)αNνZJk˜ν))PLχ0Nα˜νk+h.c..

      (10)

      Here, Z and Z+ are used to diagonalize the chargino mass matrix.

      The charged Higgs-lepton-neutrino couplings read as

      LH±Lν=3I,J=16α=1G±ˉeJ(YIlcosβZIαNνδIJPLYIJνsinβZ(I+3)αNνPR)χ0Nα3I,J=16α=1H±ˉeJ(YIlsinβZIαNνδIJPL+YIJνcosβZ(I+3)αNνPR)χ0Nα+h.c.

      (11)

      The couplings of CP-even Higgs with sneutrinos are

      L˜ν˜νH0=6i,j=1˜Ni˜Nj(H0[(NuM)ijsinα+(NdM)ijcosα]+h0[(NuM)ijcosα(NdM)ijsinα]),(NuM)ij=3I=1(e24s2Wc2WvuZIi˜νZIj˜ν3J=1vu|YIJν|2δij+(λνcˉvLAN2)Z(I+3)i˜νZIj˜ν),(NdM)ij=3I=1e24s2Wc2WvdZIi˜νZIj˜ν3I,J=1μ2YIJνZ(I+3)i˜νZJj˜ν.

      (12)
    III.   RELIC DENSITY
    • We consider the lightest sneutrino (˜νj) to be a dark matter candidate in this paper, and its main element is right-handed. Any dark matter candidate should satisfy the relic density constraint. Therefore, as the result of theoretical calculation approaches the actual observed value, the more reliable this theory becomes. The ˜νj number density n˜νj is given by the Boltzmann equation [2, 32-34]

      dn˜νjdt=3Hn˜νjσvSA(n2˜νjn2˜νjeq)σvCA(n˜νjnϕn˜νjeqnϕeq).

      (13)

      ˜νj can both self-annihilate and co-annihilate with another field of particle ϕ. When the annihilation rate of ˜νj becomes roughly equal to the Hubble expansion rate, the species freeze out at the temperature TF,

      σvSAn˜νj+σvCAnϕH(TF).

      (14)

      If we suppose Mϕ>M˜νj[35],

      nϕ=(MϕM˜νj)3/2exp[(M˜νjMϕ)/T]n˜νj.

      (15)

      Then, it becomes

      [σvSA+σvCA(MϕM˜νj)3/2exp[(M˜νjMϕ)/T]]n˜νjH(TF).

      (16)

      We calculate the self-annihilation cross section σ(˜νj˜νj anything) and co-annihilation cross section σ(˜νjϕ anything) to study its annihilation rate σvSA (σvCA) and its relic density ΩD in the thermal history of the universe. In the frame of the central mass system, the annihilation rate can be written as σv=a+bv2 [2, 34, 36, 37], where v represents the relative velocity of the two particles in their initial states. The thermally averaged cross section times velocity σeffv was extended by the Edsjö and Gondolo, including the co-annihilations [38, 39]

      σeffv(x)=2K1(ax)Ni,j=1λ(a2,b2i,b2j)gigjσij(a)da4x(Ni=1K2(bix)b2igi)2,

      (17)

      with x=TM˜νj,λ(a2,b2i,b2j)=a4+b4i+b4j2(a2b2i+a2b2j+b2ib2j), a=s/M˜νj, and bi=mi/M˜νj. g is the number of relativistic degrees of freedom with mass less than TF. σij is the cross section for the annihilation reaction ij to any allowed final state, including two SM and/or Higgs particles. Then, one can calculate the relic density, whose value is ΩDh2=0.1186±0.0020 [40].

      Ignoring some of the lower contributions, the main self-annihilation processes are as follows: ˜νj+˜νj{(W+W),(Z+Z),(h0+h0),(ˉli+li),(ˉνi+νi),(ˉui+ui),(ˉdi+di)}, with i=1,2,3 and h0 representing the lightest CP-even Higgs boson. The self-annihilation processes are plotted in Figs. 1-5.

      Figure 1.  Feynman diagrams of ~νj~νjh0h0.

      Figure 2.  Feynman diagrams of ˜νj˜νjZZ.

      Figure 3.  Feynman diagrams of ˜νj˜νjWW.

      Figure 4.  Feynman diagrams of ˜νj˜νjˉνν(ˉll).

      Figure 5.  Feynman diagrams of ˜νj˜νjˉqq.

      The studied co-annihilation processes read as [41]

      a. ˜νj+˜νk{(W+W),(Z+Z),(h0+h0),(ˉli+li)),(ˉνi+νi),(ˉui+ui),(ˉdi+di)} with k=26,i=1,2,3.

      b. ˜νj+χ0k{(W++li),(W+l+i),(Z+νi)} and k=14,i=13.

      c. ˜νj+χ±k{(l±i+γ),(l±i+Z),(l±i+h0),(W±+νi)} and k=12,i=13.

      d. ˜νj+˜L±k{(W±i+Z),(W±i+γ),(W±i+h0),(νi+l±i),(ui+ˉdi),(di+ˉui)} and k=16,i=13.

      As examples, we show some results for the self-annihilation decays ˜νj˜νjh0h0 and ˜νj˜νjˉtt. The Feynman diagrams for the process ˜νj˜νjh0h0 are plotted in Fig. 1. The lightest mass eigenstate of the CP-even Higgs H0i(i=1,2) is H01, represented by h0. The analytic results are deduced here.

      σvh0h0=|M|264πM2˜νj1m2h0M2˜νj,|M|2=|D|2+2i,k=1BiBkCiCk(M2˜νjm2H0i)(M2˜νjm2H0k)+2[2i=1DBiCi(M2˜νjm2H0i)].

      (18)

      with

      Bi=e2(A11RBiR+2A1iRB1R)4s2Wc2W,Ci=31e2BiRZI1ZI14sW2cW2,

      D=e2A11R4s2Wc2W3I=1ZI1ZI1,BiR=v1Z1iRv2Z2iR,AijR=Z1iRZ1jRZ2iRZ2jR.

      (19)

      ZR is the matrix to diagonalize the mass squared matrix of the CP-even Higgs.

      The σv for the process ˜νj˜νjˉtt is also shown here. This is the leading order contribution from the virtual CP-even Higgs. The virtual Z boson contribution is suppressed by the square of the relative velocity, and we do not show it here.

      σvˉtt=3(M2˜νjm2t)32πM2˜νjm2tv2u2i,k=18CiCk(4M2˜νjm2H0i)(4M2˜νjm2H0k).

      (20)
    IV.   DIRECT DETECTION
    • At the quark level, the process for direct detection is ˜ν+q˜ν+q. The lightest sneutrino is predominantly composed of the right-handed sneutrino, which is not active. Thus, it can easily satisfy the constraint from the direct detection experiments. This special condition is represented by the neutrino Yukawa coupling in the mass squared matrix of the sneutrino. It leads to the suppression factor ZIjν,I=(I=1,2,3) appearing in the Feynman rules for the coupling Z˜ν˜ν and H0(A0)˜ν˜ν. The lightest sneutrino is represented by ˜νj and j>3, with the right-handed sneutrinos labeled 4, 5, and 6. Then, ZIjν is in direct proportion to the tiny neutrino Yukawa coupling Yν. The order of Yν is in the region of (106109).

      The cross section from virtual Z boson contribution is suppressed by Y4ν, while the cross section of the process with the virtual CP-odd Higgs boson is suppressed by Y2νv4, with v4 coming from |ˉqγ5q|2 [42]. The CP-even Higgs contribution is dominant, with the factor Y2ν. Therefore, the cross section for sneutrino scattering off a nucleon is at least suppressed by Y2ν. The large term is from the operator ˜ν˜νˉqq at quark level. We should convert the quark level coupling to the effective nucleon coupling with the equations [ 42]

      aqmqˉqqfNmNˉNN,fN=q=u,d,sf(N)Tqaq+227f(N)TGq=c,b,taq,N|mqˉqq|N=mNf(N)Tq,f(N)TG=1q=u,d,sf(N)Tq.

      (21)

      The numbers of f(N)Tq are [43-45],

      f(p)Tu=0.0153,f(p)Td=0.0191,f(p)Ts=0.0447,f(n)Tu=0.0110,f(n)Td=0.0273,f(n)Ts=0.0447.

      (22)

      With the obtained fN, the following scattering cross section is obtained:

      σ=1πμ2K[Zpfp+(AZp)fn]2.

      (23)

      Here, μK is the effective mass of the nucleon-sneutrino system, Zp is the proton number, and A represents the atomic number.

    V.   NUMERICAL RESULTS
    • To confine the used parameter, we take into account the experiment results from the Particle Data Group (PDG) [40]. The results from our previous works are also considered [41]. The mass of the lightest neutral CP-even Higgs h0 is mh0 = 125.1 GeV [28, 29] in this work.

      The parameters used are listed in the following:

      tanβ=2,ma=1TeV,AN11=AN22=450GeV,AN33=40GeV,VL=3TeV,tanβL=2,λ11=λ22=1,λ33=0.1,M1=M2=1TeV,μ=0.8TeV,gL=16,ML11=ML22=ML33=1TeV2,μL=0.5TeV.

      (24)

      In addition to the fixed parameters shown above, there are some adjustable parameters, defined as

      τii=(M2˜E)ii,ρii=(M2˜ν)ii,ξii=ALii,ϵii=ALii,(i=1,2,3).

      (25)

      When we set these values as τii=25.2TeV2,ρii=0.1TeV2,ξii=14TeV,ϵii=3TeV, and all the off-diagonal elements of the matrixes ((M2˜E)ij,(M2˜ν)ij,ALij,ALij with ij) are zero, the numerical result for the dark matter relic density is ΩDh2 = 0.118581. This is very close to the experimental central value and within one σ sensitivity.

      At this point, the lightest scalar neutrino mass is 350 GeV, and the other scalar neutrinos' masses are all larger than 1 TeV. Additionally, the lightest scalar lepton mass is approximately 1073 GeV, and the masses of heavier scalar leptons are on the order of several TeV. The heavy CP-even Higgs mass is approximately 1 TeV. The masses of neutralinos are in the region of 7681033GeV. The two mass eigenstates of charginos are 1021 and 781 GeV. Therefore, the lightest scalar neutrino is indeed the LSP in this condition. Considering the masses of the above particles, the resonance effect cannot take place because the exchanged particle in the S channel is not near 2×350=700GeV.

      We next study how these variables affect the results. τii are the diagonal elements in the scalar lepton mass squared matrix, which can influence the scalar lepton masses. Similarly, ρii are the diagonal elements of the scalar neutrino mass squared matrix. The non-diagonal elements of the scalar lepton mass squared matrix include the parameters ξii and ϵii. In the whole, τii, ρii, ξii, and ϵii give effects to the scalar leptons (scalar neutrinos) masses and mixing. Therefore, the relic density is influenced by these parameters.

      In Fig. 6, we keep the parameters ρii=0.1TeV2,ξii=14TeV,ϵii=3TeV, and plot the results of ΩDh2 with τii. The ΩDh2 is a weakly increasing function, as τii is on the specified interval from 23 to 27 TeV2. When τii varies from 24.6 to 25.8 TeV2, the ΩDh2 is in the band of 3σ sensitivity, denoted by the gray area in Fig. 6. From these data, we can see that the masses of various particles are below a few TeV, which is consistent with the constraints from the LHC. Therefore, we believe that our results may be verified experimentally before long. Because the energy range of the particles is fairly wide, it is more advantageous to test them experimentally in the future.

      Figure 6.  Relationship between ΩDh2 and τii.

      On the contrary, Fig. 7 shows that ΩDh2 is a decreasing function of ρii within the selected interval (95000~107000) GeV2. The value of ΩDh2 decreases rapidly as the value of ρii increases. The reason for this is that as ρii increases, heavier scalar neutrino masses are obtained. At the same time, the matrix to diagonalize the scalar neutrino mass matrix changes, which influences the results directly and obviously. When ρii is in the range of approximately 9.85×104 to 1.01×105GeV2, we can ensure that ΩDh2 is within a reasonable range of 3σ.

      Figure 7.  Relationship between ΩDh2 and ρii.

      The relationship of ΩDh2 with ξii and ϵii is a little bit more interesting. In Fig. 8 and Fig. 9, the values of ΩDh2 are almost quadratic functions of the variables ξii and ϵii, respectively. As ξii is in the range of -25 to 35 TeV, the values of ΩDh2 are all acceptable. The behavior of ΩDh2 versus ϵii in Fig. 9 is similar to the condition in Fig. 8. To satisfy the experimental constraint, the region where ϵii varies from -6 to 5 TeV is acceptable. From Fig. 8 and Fig. 9, we can obtain the best values for ξii=14TeV and ϵii=3TeV.

      Figure 8.  Relationship between ΩDh2 and ξii.

      Figure 9.  Relationship between ΩDh2 and ϵii.

      With the parameters satisfying the relic density, which is shown in the first part of this section, we study the spin-independent cross section σSI for sneutrino scattering off a nucleon versus ϵii in Fig. 10. σSI increases slightly with increasing ϵii from 9×104 to 12×104 GeV2. The corresponding theoretical value of σSI is in the region of (7.88.05)×1048cm2. The lightest sneutrino mass is approximately 350 GeV, whose constraint from the direct detection experiments of σSI is approximately 3.0×1046cm2 [46, 47]. Our numerical results for the spin-independent cross section are approximately two orders smaller than the experimental constraint.

      Figure 10.  Relationship between the spin-independent cross section and ϵii.

      In Fig. 11, we plot σSI versus An=AN11=AN22. An is the parameter in the non-diagonal element of the mass matrix and multiplies neutrino Yukawa coupling. Therefore, it can have a considerable effect on the cross section of direct detection. As An varies from -1500 to 1500 GeV, σSI decreases from 1.2×1047 to 2.0×1048cm2. On the whole, it can satisfy the constraints from the direct detection experiments.

      Figure 11.  Relationship between the spin-independent cross section and An.

    VI.   DISCUSSION AND CONCLUSION
    • The BLMSSM is an extension of the MSSM, wherein right-handed neutrinos, exotic Higgs singlets, exotic quarks, and exotic leptons are added to the MSSM. Through the seesaw mechanism, three light neutrinos obtain small masses, smaller than eV order. As we all know, the value of ΩDh2 is related to many parameters, such as τii, ρii, and μL. Generally speaking, the parameters related to the cross section of scalar neutrino annihilation can affect the results to some extent. We find a reasonable parameter space to satisfy the relic density and direct detection experiments. Under these conditions, the lightest scalar neutrino mass is approximately 350 GeV as the LSP in the BLMSSM.

      Currently, theoretical physicists have proposed many models for dark matter, and the types of dark matter candidates are also enriched. In spite of this, the possibility space of reality is still much larger than our imagination. In our study, the lightest scalar neutrino could be a dark matter candidate in a reasonable range. In fact, it is one of several possibilities. Finally, we sincerely hope that researchers can uncover the real veil of dark matter as soon as possible through the full cooperation of physicists at home and abroad.

    ACKNOWLEDGMENTS
    • We are very grateful to Dr. Jing-Jing Feng of Beijing Normal University for solving some problems.

Reference (47)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return