-
The relativistic Hartree-Bogoliubov (RHB) equation [73] can provide a unified and self-consistent treatment of both the mean-field and the pairing correlation, and describe the exotic nuclei properly in the Dirac Woods-Saxon basis [74]. The RHB equation reads
$ \begin{equation} \begin{pmatrix} h_{D}-\lambda_{\tau} & \Delta \\ -\Delta^{*} & -h^{*}_{D}+\lambda_{\tau} \end{pmatrix} \begin{pmatrix} U_{k} \\ V_{k} \end{pmatrix} = E_{k} \begin{pmatrix} U_{k} \\ V_{k} \end{pmatrix}, \end{equation} $
(1) where
$ \lambda_{\tau} $ is the nucleon Fermi energy, and$ E_{k} $ and$ (U_{k}, V_{k})^{\mathsf{T}} $ are the quasiparticle energy and wave function, respectively. The Dirac Hamiltonian in the coordinate space is$ \begin{equation} h_{D}({\boldsymbol{r}}) = {\boldsymbol{\alpha}} \cdot {\boldsymbol{p}}+V({\boldsymbol{r}})+\beta[M+S({\boldsymbol{r}})], \end{equation} $
(2) with the scalar potential
$ S({\boldsymbol{r}}) $ and the vector potential$ V({\boldsymbol{r}}) $ . For axially symmetric deformed nuclei with spatial reflection symmetry, the potentials are expanded in terms of the Legendre polynomials,$ \begin{equation} f({\boldsymbol{r}}) = \sum\limits_{\lambda}f_{\lambda}(r)P_{\lambda}(\mathrm{cos}\theta),\ \ \ \lambda = 0,2,4,\cdots. \end{equation} $
(3) The pairing potential reads
$ \begin{equation} \Delta({\boldsymbol{r}}_{1},{\boldsymbol{r}}_{2}) = V^{PP}({\boldsymbol{r}}_{1},{\boldsymbol{r}}_{2}) \kappa({\boldsymbol{r}}_{1},{\boldsymbol{r}}_{2}), \end{equation} $
(4) where
$ \kappa({\boldsymbol{r}}_{1},{\boldsymbol{r}}_{2}) $ is the pairing tensor [75]. A density-dependent zero-range pairing force is adopted as$ \begin{align} V^{PP}({\boldsymbol{r}}_{1},{\boldsymbol{r}}_{2}) = V_{0}\frac{1}{2}(1-P^{\sigma})\delta({\boldsymbol{r}}_{1}-{\boldsymbol{r}}_{2}) \left(1-\frac{\rho({\boldsymbol{r}}_{1})}{\rho_{\rm sat}}\right), \end{align} $
(5) with the pairing strength
$ V_{0} $ and the saturation density of nuclear matter$\rho_{\rm sat}$ .$ \dfrac{1}{2}(1-P^{\sigma}) $ is the projector for the spin$ S = 0 $ component in the pairing channel. The details of the DRHBc theory with meson-exchange and point-coupling density functionals can be found in Refs. [49] and [65], respectively.By solving the DRHBc equations self-consistently, one obtains the static mean-field solution which is characterized by the breaking of translational and rotational symmetries. To determine the beyond-mean-field ground-state energy
$ E(0^{+}_{1}) $ , it is necessary to extend the DRHBc scheme to include collective dynamical correlations that arise from symmetry restoration and shape fluctuations around the mean-field minima.The beyond-mean-field ground-state energy
$ E(0^{+}_{1}) $ can be described using a collective Hamiltonian, with deformation-dependent collective parameters determined from constrained DRHBc calculations. The 2DCH Hamiltonian takes the following form:$ \begin{aligned}[b] \hat{H}_{\mathrm{coll}} = &\hat{T}_{\mathrm{vib}}+\hat{T}_{\mathrm{rot}}+V_{\mathrm{coll}}\\ = &-\frac{\hbar^{2}}{2}\frac{1}{\sqrt{\mathscr{I}B_{\beta\beta}}}\frac{\partial}{\partial\beta}\sqrt{\frac{\mathscr{I}}{B_{\beta\beta}}} \frac{\partial}{\partial\beta}+\frac{ \hat{J}^{2}}{2\mathscr{I}}+V_{\mathrm{coll}} , \end{aligned} $
(6) where
$ \hat{T}_{\mathrm{vib}} $ and$ \hat{T}_{\mathrm{rot}} $ are the vibrational and rotaitonal kinetic-energy terms, respectively.$ V_{\mathrm{coll}} $ is the collective potential. In the second line of Eq. (6),$ \hat{J} $ denotes the total angular momentum in the intrinsic frame, and$ \mathscr{I} $ denotes the moment of inertia, which is calculated by the Inglis-Belyaev formular [75–77]:$ \begin{equation} \mathscr{I} = \sum_{i,j}\frac{(u_{i}v_{j}-v_{i}u_{j})^2}{E_{i}+E_{j}}|\langle i|\hat{J}|j\rangle|^{2}, \end{equation} $
(7) where
$ |i\rangle $ and$ |j\rangle $ denote the single-particle states in the canonical basis, while$ v_{i} $ ($ u_{i} $ ) and$ E_{i} $ represent the occupation probabilities and the quasi-particle energies, respectively. The collective mass$ B_{\beta\beta} $ is calculated in the cranking approximation [78],$ \begin{align} B_{\beta\beta} = \frac{9r_{0}^{4}A^{10/3}}{5\pi}\hbar^{2}\left[M_{(1)}^{-1}M_{(3)}M_{(1)}^{-1}\right], \end{align} $
(8) with
$ \begin{align} M_{(n)} = \sum\limits_{ij}\frac{\langle i|\hat{Q}_{20}|j\rangle\langle j|\hat{Q}_{20}|i\rangle}{(E_{i}+E_{j})^{n}}(u_{i}v_{j}+v_{i}u_{j})^{2} , \end{align} $
(9) where the quadrupole moment operator
$\hat{Q}_{20} = $ $ \sqrt{16\pi/5}r^{2}Y_{20}(\theta,\varphi)$ ,$ r_0 = 1.2 $ fm, and A is the mass number. The collective potential$ V_{\mathrm{coll}} $ is calculated from the DRHBc total energy$ E_{\mathrm{tot}} $ by subtracting the zero-point energy (ZPE) corrections [78], mainly including the rotational correction energy$ E_{\mathrm{rot}} $ and the vibrational correction energy$ E_{\mathrm{vib}} $ ,$ \begin{aligned}[b] V_{\mathrm{coll}} = &E_{\mathrm{tot}}-E_{\mathrm{rot}}-E_{\mathrm{vib}}\\ = &E_{\mathrm{tot}}-\frac{\langle \hat J^{2}\rangle}{2\mathscr{I}}-\frac{1}{4}\left[M_{(2)}M_{(3)}^{-1}\right] . \end{aligned} $
(10) By diagonalizing the 2DCH Hamiltonian in Eq. (6), one can obtain the beyond-mean-field ground-state energy
$ E(0^{+}_{1}) $ . The dynamical correlation energy is defined as the difference between the global minimum of the total energy curve and$ E(0^{+}_{1}) $ :$ \begin{align} \mathrm{DCE} = E_{\mathrm{tot}}^{\mathrm{min}}-E(0^+_{1}) . \end{align} $
(11)
Beyond-mean-field dynamical correlations for nuclear mass table in deformed relativistic Hartree-Bogoliubov theory in continuum
- Received Date: 2022-01-07
- Available Online: 2022-06-15
Abstract: We extend the deformed relativistic Hartree-Bogoliubov theory in continuum (DRHBc) to go beyond-mean-field framework by performing a two-dimensional collective Hamiltonian. The influences of dynamical correlations on the ground-state properties are examined in different mass regions, picking Se, Nd, and Th isotopic chains as representatives. It is found that the dynamical correlation energies (DCEs) and the rotational correction energies