-
In the present study, cross sections for the ground, first, second, and third excited state transitions with neutron energies following the R-matrix analysis were determined and are shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 4, respectively, and the total capture cross section obtained in the R-matrix analysis is shown in Fig. 5. The optimal R-matrix parameters are presented in Table 1. We obtained the reaction rates of the
$ ^{12}\mathrm C(n,\gamma)^{13}\mathrm C $ reaction (in the range of$ 10^7 - 10^9 $ ), which are listed in Table 2. The total$ \chi ^2 $ value is 1.13. At$ kT = 30 $ keV, the cross section is estimated to be less than or equal to 11.98$ \pm $ 0.25 μb, whereas a lower limit of 3.2 μb is derived from extrapolating the measured thermal cross section based on the$ 1/v $ law [6]. Our discoveries hold significance for the nucleosynthesis outcomes in non-uniform primordial nucleosynthesis models.Figure 1. Variation of the
$ ^{13}\mathrm C $ captured state to ground state reaction cross section with CM energy for$ ^{12}\mathrm C(n,\gamma)^{13}\mathrm C $ using best-fit R-matrix analysis. Plotted data with errorbars are extracted from Ohsaki et al. (1994) [5].Figure 2. Variation of the
$ ^{13}\mathrm C $ captured state to first excited state reaction cross section with CM energy for$ ^{12}\mathrm C(n,\gamma)^{13}\mathrm C $ using best-fit R-matrix analysis. Plotted data with errorbars are extracted from Ohsaki et al. (1994) [5].Figure 3. Variation of the
$ ^{13}\mathrm C $ captured state to second excited state reaction cross section with CM energy for$ ^{12}\mathrm C(n,\gamma)^{13}\mathrm C $ using best-fit R-matrix analysis. Plotted data with errorbars are extracted from Ohsaki et al. (1994) [5].Figure 4. Variation of the
$ ^{13}\mathrm C $ captured state to third excited state reaction cross section with CM energy for$ ^{12}\mathrm C(n,\gamma)^{13}\mathrm C $ using best-fit R-matrix analysis. Plotted data with errorbars are extracted from Ohsaki et al. (1994) [5].Figure 5. Variation of the total reaction cross section with CM energy for
$ ^{12}\mathrm C(n,\gamma)^{13}\mathrm C $ using best-fit R-matrix analysis. Plotted data with errorbars are extracted from Ohsaki et al. (1994) [5].Level
SpinEnergy
/MeVChannel
Pairl/Multi-
polarityFitted
parameters$ 1/2- $ 0.0 $^{12}{\rm C}+n$ $ 1 $ ANC=6.03 fm−1/2 $ 1/2+ $ 3.089 $^{12}{\rm C}+n$ 0 ANC=2.85 fm−1/2 $ 3/2- $ 3.684 $^{12}{\rm C}+n$ 1 ANC=0.23 fm−1/2 $ 5/2+ $ 3.853 $^{12}{\rm C}+n$ 1 ANC=0.11 fm−1/2 $ 5/2+ $ 6.864 $^{13}{\rm C}+\gamma$ M2 Γ =6.02 keV $ 5/2- $ 7.547 $^{13}{\rm C}+\gamma$ E2 Γ=1.21 keV $ 3/2+ $ 7.686 $^{13}{\rm C}+\gamma$ E1 Γ=69.9 keV Table 1. Fitted R-matrix parameters in the compound nucleus
$ ^{13} $ C and the allowed decay channels (allowed maximum orbital momentum of 3, maximum gamma multipolarity of 2, and maximum of 2 gamma multiplicities per decay).Temperature in GK Reaction Rates in cm3 mol−1 s−1 0.01 375 0.06 905 0.11 1167 0.16 1417 0.21 1665 0.26 1913 0.31 2160 0.36 2407 0.41 2652 0.46 2897 0.51 3139 0.56 3380 0.61 3620 0.66 3858 0.71 4094 0.76 4328 0.81 4561 0.86 4792 0.91 5021 0.96 5249 1.01 5475 Table 2. Nuclear reaction rates of
$ ^{12}\mathrm C(n,\gamma)^{13}\mathrm C $ obtained in R-matrix analysis.
Cosmic implications of the ${^{12}{\bf C}(\boldsymbol n,\bf\gamma)^{13}{\bf C} }$ reaction: a nuclear astrophysical perspective
- Received Date: 2023-10-08
- Available Online: 2024-02-15
Abstract: We conducted a comprehensive study of the neutron capture cross section of