-
The top quark is the heaviest elementary particle in the Standard Model (SM), and its mass is one of the most important input parameters of the SM. The largest mass among quarks, or equivalently the strongest Yukawa coupling, implies that the top quark plays a crucial role in governing the stability of the electroweak vacuum. Determining the top-quark mass accurately is helpful for testing the precision of the SM, assessing whether the vacuum is in stable or meta-stable state, and searching for new physics beyond the SM. Direct measurements of the top-quark mass exhibit high precision in proton-proton (
pp ) collisions at the LHC [1–8]; these measurements rely on the reconstruction of the top quark decay products and multipurpose Monte Carlo (MC) event generators. Other measurements were also reported in Refs. [9–17]. In the theoretical side, many studies aimed to relate the top-quark mass to its on-shell (OS) scheme mass, c.f. Refs. [18–25]. A0.5∼1 GeV difference between the top-quark MC mass (MMCt ) and top-quark OS mass (MOSt ) has been reported [26–32].The top-quark OS mass has been investigated in detail in Refs. [33–52]. This mass can be related to the modified minimal subtraction (
¯MS ) scheme running mass by using the perturbative relations between the top-quark bare mass (mt,0 ) and renormalized mass in the OS- or¯MS - scheme, e.g.,mt,0=ZOSmMOSt andmt,0=Z¯MSm¯mt(μr) . In these expressions,ZOSm andZ¯MSm are quark mass renormalization constants in the OS- and¯MS - schemes, respectively. In perturbative Quantum Chromodynamics (pQCD) theory, the relation between the OS mass and¯MS mass has been calculated up to four-loop level [53–65]. This allows for determining the OS mass with the help of experimental results for the¯MS mass. In the determination process, the key issue is to set the exact values of the strong coupling constant (αs ) and¯MS mass (e.g.,¯mq ,q=c,b,t denote the charm, bottom, and top quarks, respectively). The scale running behavior ofαs and¯mq is governed by general renormalization group equations (RGEs) involving both the β function and quark mass anomalous dimensionγm :das(μr)dlnμ2r=β(as)=−∞∑i=0βiai+2s(μr),
(1) d¯mq(μr)dlnμ2r=¯mq(μr)γm(as)=−¯mq(μr)∞∑i=0γiai+1s(μr),
(2) where
as(μr)=αs(μr)/(4π) . The{βi} - and{γi} -functions have been calculated up to five-loop level in the¯MS -scheme [66–74], e.g.,β0=11−2nf/3 andγ0=4 , wherenf is the number of active flavors. Using reference points such asαs(MZ)=0.1179±0.0009 and¯mt(¯mt)=162.5+2.1−1.5 GeV, reported by the Particle Data Group [75], their values can be obtained at any scale.Because of renormalization group invariance (RGI), the physical observable is independent of any choices of renormalization scheme and scale. However, for a fixed-order pQCD prediction, the mismatching of
αs and the pQCD coefficients at each order leads to the well-known renormalization scheme-and-scale ambiguities. To eliminate such artificially introduced renormalization scheme-and-scale ambiguities, the principle of maximum conformality (PMC) was proposed [76–79]. This principle sets the underlying procedure for the well-known Brodsky-Lepage-Mackenzie (BLM) method [80] as well as a rule for generalizing the BLM procedure up to all orders. A short review of the development of the PMC from the BLM method can be found in Ref. [81]. All the features previously observed in the studies on the BLM method are also adaptable to the PMC with or without proper transformations, e.g., only the RG-involvednf -terms in the pQCD series should be treated as non-conformal terms and be adopted for setting the correct magnitude ofαs . The PMC thus provides a rigorous scale-setting approach for obtaining unambiguous fixed-order pQCD predictions consistent with the principles of the renormalization group1 . Moreover, its predictions satisfy all the requirements for renormalization group invariance [87, 88]. A complete discussion about the PMC can be found in review articles [89–91].To date, the PMC method has been successfully applied to many high-energy processes, c.f. Refs. [92–98], aiming to determine the correct magnitude of the strong running coupling
αs of the pQCD series by using the procedures suggested in Refs. [99, 100]. However, there are also many other advances related to both the running couplingαs and quark¯MS running mass¯mq . If the pQCD series contains both thenf -terms related to the renormalization ofαs and thenf -terms related to the renormalization of¯mq , some extra treatments must be applied before using the formulas listed in Refs. [99, 100]; those formulas are based on the assumption that both the conformal and non-conformal terms have been correctly distributed2 . To achieve a correct PMC prediction, the degeneracy relations among different orders, which jointly constitute a general property of the QCD theory [103], should be applied correctly. In this paper, we derive new degeneracy relations with the help of the RGEs involving both the β-function and quark mass anomalous dimensionγm -function, which lead to improved PMC scale-setting procedures. Such procedures are then applied for determining the top-quark OS mass by simultaneously determining the correct magnitudes ofαs and quark¯MS running mass¯mq of the perturbative series with the help of RGEs for either the running couplingαs or running mass.The rest of this paper is organized as follows. In Sec. II, we describe the special degeneracy relations of the non-conformal terms in the perturbative coefficients by using the
Rδ -scheme. Then, we elaborate on the improved procedures of the PMC scale-setting approach under the running mass scheme. We apply these procedures in Sec. III to determine the top-quark OS massMt via its perturbative relation to the¯MS mass. Section IV presents a summary. -
The
Rδ -scheme represents theMS -type renormalization scheme with a subtraction termln(4π)−γE−δ , where δ is an arbitrary finite number [99] satisfying thatRδ=0=¯MS . As an extension of Ref. [99], we consider the pQCD predictionρ(Q2) including the¯MS running mass. In the reference schemeR0 , this prediction can be expressed as follows:ρ0(Q2)=r0¯mnq(μr)[1+∞∑k=1rk(μ2r/Q2)aks(μr)],
(3) where
ρ0 denotes the pQCD prediction ρ in theR0 scheme, Q represents a physical scale of the measured observable3 ,¯mq is the quark¯MS running mass, n is the power of¯mq associated with the tree-level term, andr0 is a global factor. For simplicity, we assume thatr0 does not haveas . The pQCD series is independent of the choice of renormalization scaleμr , provided that it has been calculated up to all orders. However, it is not feasible to achieve this goal owing to the difficulty of high-order calculations. Generally, the pQCD series becomes a renormalization scale that depends on the scheme at any finite order; this dependence can be exposed by using theRδ -scheme. One can derive the general expression for ρ inRδ by using the scale displacements in anyRδ -scheme:as(μr)=as(μδ)+∞∑n=11n!dnas(μr)(dlnμ2r)n|μr=μδ(−δ)n,
(4) ¯mq(μr)=¯mq(μδ)+∞∑n=11n!dn¯mq(μr)(dlnμ2r)n|μr=μδ(−δ)n,
(5) where
δ=−ln(μ2r/μ2δ) . It is useful to derive the general displacement relations as expansions up to fixed order, as shown in Appendix A.Inserting these scale displacements into Eq. (3), one can obtain the expression of
ρδ for an arbitrary δ in anyRδ -scheme:ρδ(Q2)=r0¯mnq(μδ){1+(r1+nγ0δ)as(μδ)+[r2+β0r1δ+n(γ1+γ0r1)δ+n2β0γ0δ2+n22γ20δ2]a2s(μδ)+O[a3s(μδ)]},
(6) where
ρδ denotes the pQCD prediction ρ in theRδ scheme andμ2δ=μ2reδ . A useful expression ofρδ up toa4s -order is provided in Appendix B. It is easy to return toρ0 by settingδ=0 . A further description of theRδ -scheme can be found in Sec. II of Ref. [99].The renormalization group invariance requires that the perturbative series up to all orders for a physical observable be independent of the theoretical convention:
dρδdδ=∂ρδ∂δ+β(as)∂ρδ∂as+¯mqγm(as)∂ρδ∂¯mq.=0.
(7) Thus, we can obtain
∂ρδ∂δ=−β(as)∂ρδ∂as−¯mqγm(as)∂ρδ∂¯mq.
(8) Therefore, by absorbing all
{βi} and{γi} dependences into the running coupling constant and quark running mass in Eq. (6), one can obtain a scheme-invariant prediction given that the δ-dependence is vanished. Therefore, the coefficients of the resultant series will be equal to those of the conformal (or scale-invariant) theory, that is,∂ρδ/∂δ=0 .The expression in Eq. (6) also exposes the pattern of
{βi} -terms and{γi} -terms in the coefficients at each order. Given that there is nothing special about any particular value of δ, it is possible to infer some degenerate relations between certain coefficients of the{βi,γi} -terms from the expressionρδ . That is, the coefficients ofβ0a2s andnγ0a2s can be set equal, given that their coefficients are bothr1δ . Therefore, for any scheme, the expression for ρ can be transformed into a similar form to that ofρδ :ρ(Q2)=r0¯mnq(μr){1+(ˆr1,0+nγ0lnμ2rQ2)as(μr)+[ˆr2,0+β0ˆr2,1+nγ0ˆr2,1+(β0ˆr1,0+nγ1+nγ0ˆr1,0)lnμ2rQ2+12(nβ0γ0+n2γ20)ln2μ2rQ2]a2s(μr)+O[a3s(μr)]},
(9) where
ˆri,j are coefficients that do not depend onμr ,ˆri,0 are conformal coefficients, and the{βi,γi} -terms are non-conformal terms. A useful expression up toa4s -order is provided in Appendix C. It is easy to find the relationships between the coefficientsrk(μ2r/Q2) andˆri,j :r1(μ2r/Q2)=ˆr1,0+nγ0lnμ2rQ2,
(10) r2(μ2r/Q2)=ˆr2,0+β0ˆr2,1+nγ0ˆr2,1+(β0ˆr1,0+nγ1+nγ0ˆr1,0)lnμ2rQ2+12(nβ0γ0+n2γ20)ln2μ2rQ2,
(11) The relationships between the coefficients
rk(μ2r/Q2)(k=3,4) andˆri,j are provided in Appendix D. These relationships lead to systematic procedures to determine the coefficientsˆri,j . In some cases, the coefficientsrk(μ2r/Q2) in Eq. (3) are computed numerically, and the{βi,γi} dependence is not known explicitly. However, it is straightforward to obtain the dependence on the number of quark flavorsnf , becausenf enters analytically in any loop diagram computation. To apply the PMC scale-setting approach, one should put the pQCD expression into the form of Eq. (9). Owing to the special degeneracy relations in the coefficients of{βi,γi} -terms, thenf series can be matched to theˆri,j coefficients in a unique manner. Thekth -order coefficient in pQCD has an expansion innf that readsrk(μ2r/Q2)=ck,0+ck,1nf+...+ck,k−1nk−1f,
(12) where the coefficients
ck,l are obtained from the pQCD calculation and are a function ofμr and Q. Then, the coefficientsˆri,j in Eq. (9) can be determined by using their relationship withrk(μ2r/Q2) and the known coefficientsck,l . The steps are detailed in Appendix E. In the next section, we will show improved PMC formulas under the running mass scheme. -
Adopting the PMC single-scale approach [100], the overall effective running coupling
as(Q∗) and effective running mass¯mq(Q∗) can be determined by absorbing all the non-conformal terms. Eq. (9) transforms into the following conformal series:ρ(Q2)=r0¯mnq(Q∗){1+ˆr1,0as(Q∗)+ˆr2,0a2s(Q∗)+ˆr3,0a3s(Q∗)+ˆr4,0a4s(Q∗)+O[a5s(Q∗)]},
(13) where
Q∗ is the PMC scale. More explicitly, by using the scale displacement relations to shift the scaleμr toQ∗ in Eq. (9), the PMC scaleQ∗ can be determined by requiring that all non-conformal terms (NonConf.) vanish:ρ(Q2)NonConf.=r0¯mnq(Q∗){r1,NonConf.(Q∗)as(Q∗)+r2,NonConf.(Q∗)a2s(Q∗)+r3,NonConf.(Q∗)a3s(Q∗)+r4,NonConf.(Q∗)a4s(Q∗)+O[a5s(Q∗)]}=0,
(14) where
r1,NonConf.(Q∗)=nγ0lnQ2∗Q2,
(15) r2,NonConf.(Q∗)=β0ˆr2,1+nγ0ˆr2,1+(β0ˆr1,0+nγ1+nγ0ˆr1,0)lnQ2∗Q2+12(nβ0γ0+n2γ20)ln2Q2∗Q2,
(16) where the higher-order coefficients
ri,NonConf.(i=3,4) are provided in Appendix F.Owing to its perturbative nature, the solution of
ln(Q2∗/Q2) can be expanded as a power series overas(Q∗) :lnQ2∗Q2=n∑i=0Siais(Q∗),
(17) where
Si are perturbative coefficients that can be derived by solving Eq. (14). Forn≠0 , the first three coefficientsSi(i=0,1,2) areS0=0,
(18) S1=−(β0+nγ0)ˆr2,1nγ0,
(19) S2=ˆr1,0ˆr2,1−ˆr3,1−nγ0ˆr3,22−β1ˆr2,1nγ0+β0(γ1ˆr2,1nγ20+2ˆr1,0ˆr2,1−2ˆr3,1nγ0−3ˆr3,22)+β20(ˆr1,0ˆr2,1n2γ20−ˆr3,2nγ0),
(20) and
S3 is provided in Appendix G. Following this idea, the PMC scaleQ∗ can be fixed at any order; the correct magnitudes of the quark running mass¯mq and running coupling constantas are determined simultaneously. Matching theμr -independent conformal coefficientsˆri,0 , the resultant PMC series will be free of conventional renormalization scale ambiguity. In the following section, we apply these formulas to determine the top-quark OS massMt via its perturbative relation to the¯MS mass. -
For numerical calculations, we adopted
αs(MZ)=0.1179±0.0009 and¯mt(¯mt)=162.5+2.1−1.5 GeV [75]. The running of the strong couplingαs(μr) was evaluated using the RunDec program [104]. -
The relation between the
¯MS quark mass and OS quark mass can be expressed as¯mt(μr)Mt=ZOSmZ¯MSm=∑n≥0ans(μr)z(n)m(μr),
(21) where
z(0)m(μr)=1 andz(n)m(μr) is a function ofln(μ2r/M2t) . As an expansion of a previous study [95], we focus on the inverted relation with respect to Eq. (21),Mt¯mt(μr)=Z¯MSmZOSm=∑n≥0ans(μr)c(n)m(μr),
(22) where
c(0)m(μr)=1 andc(n)m(μr) is a function ofln(μ2r/¯m2t(μr)) . Then, we can determine the top-quark OS mass using the following relationship:Mt=¯mt(μr){1+r1(μr)as(μr)+r2(μr)a2s(μr)+r3(μr)a3s(μr)+r4(μr)a4s(μr)+O[a5s(μr)]},
(23) where the perturbative coefficients
ri(μr)(i=1,2,3,4) were reported in Refs. [61, 62] andri(μr) are functions ofln(μ2r/¯m2t(μr)) . Theμr dependence of the top-quark¯MS running mass¯mt(μr) is governed by the quark mass anomalous dimensionγm , which has been calculated up toO(α5s) [71, 72]. Thus, the top-quark¯MS running mass¯mt(μr) can be determined by the following equation [72]:¯mt(μr)=¯mt(¯mt)ct[αs(μr)/π]ct[αs(¯mt)/π],
(24) where
ct[x]=x4/7(1+1.19796x+1.79348x2−0.683433x3−3.53562x4) .By setting all input parameters to their central values, the top-quark OS mass
Mt under the conventional scale-setting approach can be represented as depicted in Fig. 1. In particular, Fig. 1 shows that, in agreement with conventional wisdom, the renormalization scale dependence of conventional series becomes smaller when more loop terms have been included. Numerically, we haveMt|O(α4s)Conv.=[172.23,172.88] forμr∈[¯mt(¯mt)/2,2¯mt(¯mt)] ; e.g., the net scale uncertainty becomes ~0.4% for aα4s -order correction. This small net scale dependence for the prediction up toa4s -order is due to the well convergent behavior of the perturbative series. The relative magnitudes among different orders change significantly for different choices ofμr ; for example, the relative magnitudes of the leading-order-terms (LO): next-to-leading-order-terms (NLO): next-to-next-to-leading-order-terms (N2LO): next-to-next-to-next-to-leading-order-terms (N3LO): next-to-next-to-next-to-next-to-leading-order-terms (N4LO)≃ 1: 4.60%: 0.98%: 0.30%: 0.12% forμr=¯mt(¯mt) , which represents a proper perturbative nature. More specifically,Mt up to N4LO-level has the following perturbative behavior:Figure 1. (color online) Top-quark OS mass
Mt versus renormalization scale (μr ) under the conventional scale-setting approach up to different perturbative orders.Mt|Conv.=162.5−8.15−0.83+7.48+6.36+0.62+1.60+1.80+0.14+0.49+0.47+0.03+0.19+0.14+0.01=172.26+0.62−0.03(GeV),
(25) whose central values are those for
μr=¯mt(¯mt) , and the scale uncertainties are estimated by varyingμr∈[¯mt(¯mt)/2,2¯mt(¯mt)] . The higher-order prediction ofMt is not a monotonic function ofμr , which leads to asymmetric uncertainty. By using another usual choice, i.e.,μr=172.5 GeV, and varying this value within the range of[1/2×172.5,2×172.5] , we obtainMt=172.29+0.64−0.06 GeV. The central value shifts from172.26 GeV by+0.03 GeV, and its uncertainty remains asymmetric.We present
Mt under PMC scale-setting approach inFig. 2, which shows the top-quark OS massMt under the PMC single-scale approach up to different perturbative orders:Figure 2. (color online) Top-quark OS mass
Mt versus renormalization scale (μr ) under the PMC single-scale approach up to different perturbative orders.Mt|O(αns)PMC={170.01,172.66,172.27,172.41}(GeV)
(26) for
n=1 , 2, 3, and 4, respectively. There is no renormalization scale ambiguity for the PMC prediction, andMt quickly approaches its steady value. After applying the PMC, the perturbative nature of theMt pQCD series is notably improved owing to the elimination of divergent renormalization terms. Moreover, the relative importance of the LO-terms: NLO-terms: N2LO-terms: N3LO-terms: N4LO-terms changes to 1: 4.79%: –1.15%: –0.15%: 0.07%. Up to N4LO-level, we haveMt|PMC=¯mt(Q∗){1+ˆr1,0as(Q∗)+ˆr2,0a2s(Q∗)+ˆr3,0a3s(Q∗)+ˆr4,0a4s(Q∗)+O[a5s(Q∗)]}=166.49+7.97−1.92−0.25+0.12=172.41(GeV),
(27) where the PMC scale
Q∗ can be established up to next-to-next-to-leading-log (N2LL) accuracy by using Eq. (17) as follows:lnQ2∗¯m2t(Q∗)=−68.73as(Q∗)+247.483a2s(Q∗)−6447.27a3s(Q∗),
(28) which leads to
Q∗=123.3 GeV. Owing to its perturbative nature, we take the magnitude of the last known term as the unknown N3LL term in a conservative estimation of the unknown perturbative terms. Thus, we obtain a scale shift ofΔQ∗=(+0.2−0.3) GeV, which leads toΔMt|PMC=(+0.04−0.03)(GeV).
(29) This uncertainty can be defined as the first type of residual scale dependence due to unknown higher-order terms [105]. Such residual scale dependence is distinct from the conventional scale ambiguities and is suppressed owing to the perturbative nature of the PMC scale. For the present case, the residual scale dependence expressed by Eq. (29) is much smaller than the conventional scale uncertainty presented in Eq. (25).
-
In pQCD calculations, the magnitude of unknown perturbative terms is also a major source of uncertainty. It is helpful to find a reliable prediction of the unknown higher-order terms. The Padé approximation approach (PAA) [106, 107] is a well-known method to estimate the
(n+1)th -order coefficient for a givennth -order perturbative series; this method has been tested on various known QCD results [108]. More explicitly, for the pQCD approximantρ(Q2)=c1as+c2a2s+c3a3s+c4a4s , the preferable [n/n+1]-type PAA prediction [109] of thea5s -terms ofMt under the conventional scale-setting approach isρN5LO[1/2]=2c2c3c4−c33−c1c24c22−c1c3a5s,
(30) whereas the preferable [0/n-1]-type PAA prediction of the
a5s -terms ofMt under the PMC scale-setting approach [92] isρN5LO[0/3]=c42−3c1c22c3+2c21c2c4+c21c23c31a5s.
(31) This uncertainty can be defined as the second type of residual scale dependence due to unknown higher-order terms. Then, our prediction of the magnitude of the N5LO-terms of top-quark OS mass
Mt isΔMt|N5LOConv.=±0.08(GeV),
(32) ΔMt|N5LOPMC=±0.02(GeV).
(33) Note that the conventional result is obtained by setting
μr=¯mt(¯mt) , leading to numerical values that vary with the renormalization scale owing to the fact that the coefficientsci are not fixed at each order. However, the PAA prediction of the PMC series exhibits no renormalization scale ambiguity, given that the PMC coefficients are scale-invariant.The combination of the two aforementioned residual scale dependences leads to a net perturbative uncertainty due to uncalculated higher-order terms under conventional and PMC scale-setting approaches:
ΔMt|HighorderConv.=(+0.63−0.09)(GeV),
(34) ΔMt|HighorderPMC=±0.04(GeV).
(35) This shows that the PMC scale-invariant series provides a more accurate basis than the conventional scale-dependent series for estimating the uncertainty caused by uncalculated higher-order terms.
There are uncertainties from
Δαs(MZ) andΔ¯mt(¯mt) . As an estimation, settingΔαs(MZ)=±0.0009 [75], we obtainΔMt|Δαs(MZ)Conv.=±0.09(GeV),
(36) ΔMt|Δαs(MZ)PMC=(+0.10−0.08)(GeV).
(37) To estimate the uncertainty from the top-quark
¯MS mass, settingΔ¯mt(¯mt)=(+2.1−1.5) GeV, we obtainΔMt|Δ¯mt(¯mt)Conv.=(+2.20−1.57)(GeV),
(38) ΔMt|Δ¯mt(¯mt)PMC=(+2.21−1.57)(GeV).
(39) This shows that the magnitude of
ΔMt is close to that ofΔ¯mt(¯mt) .The final results for the top-quark OS mass are as follows:
Mt|Conv.=172.26+2.29−1.58(GeV),
(40) Mt|PMC=172.41+2.21−1.57(GeV),
(41) where the average uncertainties are squared with respect to those of
ΔMt|High order ,ΔMt|Δαs(MZ) , andΔMt|Δ¯mt(¯mt) , respectively. Among these uncertainties, the one caused byΔ¯mt(¯mt) is dominant4 ; more accurate data are needed to suppress this uncertainty.We compare our results with experimental measurements [9, 75, 110] and some other theoretical predictions based on the analyses of top-pair production at hadronic colliders [46–48] in Table 1. All the predictions are consistent with each other within reasonable errors. Owing to the large input error of the top-quark
¯MS mass¯mt(¯mt) , our results show larger uncertainty than those of Refs. [46–48]. Up to the present known N4LO level, the predictions under the PMC and conventional scale-setting approaches are both consistent with the latest experimental measurements [9].At present, the experimentally measured value of top-quark OS mass is more precise than that of the top-quark
¯MS mass. Thus, one can extract the¯MS mass¯mt(¯mt) by inversely using Eq. (23) or the resultant PMC series. This is discussed in the following section. -
Using experimental results of OS mass is also a suitable approach for extracting the
¯MS mass¯mt(¯mt) . The PDG [75] reports that the world average results of top-quark OS mass isMt=172.5±0.7 GeV, exhibiting a higher accuracy than that of the top-quark¯MS mass, i.e.,¯mt(¯mt)=162.5+2.1−1.5 GeV.In the conventional scale-setting approach, one can extract the
¯MS mass¯mt(¯mt) by using Eq. (23) and setting the renormalization scaleμr=¯mt(¯mt) :¯mt(¯mt)|Conv.=162.73+0.67−0.67(GeV),
(42) where the central value is obtained by setting
Mt=172.5 GeV and the uncertainty is caused byΔMt=±0.7 GeV.Considering the uncertainty of the renormalization scale
μr∈[12¯mt(¯mt),2¯mt(¯mt)] , we obtain¯mt(¯mt)|Conv.=162.73+0.00−1.16(GeV),
(43) Thus, the conventional prediction is
¯mt(¯mt)|Conv.=162.73+0.67−1.34(GeV),
(44) where the average uncertainty is squared with respect to that of
ΔMt=±0.7 GeV and the renormalization scaleμr∈[12¯mt(¯mt),2¯mt(¯mt)] .In the PMC scale-setting approach, one can extract the
¯MS mass¯mt(¯mt) by using the PMC series without renormalization scale uncertainty:Mt=¯mt(Q∗){1+ˆr1,0as(Q∗)+ˆr2,0a2s(Q∗)+ˆr3,0a3s(Q∗)+ˆr4,0a4s(Q∗)+O[a5s(Q∗)]},
(45) where the PMC scale
Q∗ satisfies Eq. (28). Thus, the PMC prediction is¯mt(¯mt)|PMC=163.08+0.66−0.66(GeV),
(46) where the central value is obtained by setting
Mt=172.5 GeV and the uncertainty is caused byΔMt=±0.7 GeV. It can be demonstrated that the PMC result predicted by Eq. (46) is more accurate than the conventional result predicted by Eq. (44). Finally, these results overlap with those of a previous study of ours,¯mt(¯mt)=162.6+0.4−0.4 GeV, obtained by using the RGE ofαs alone [95] and the experimental result¯mt(¯mt)=162.9±0.5±1.0+2.1−1.2 GeV [10]. -
In the present paper, we have derived new degeneracy relations with the help of the RGEs involving both the β-function and quark mass anomalous dimension
γm -function, leading to improved PMC scale-setting procedures. Such procedures can be used to eliminate the conventional renormalization scale ambiguity of the fixed-order pQCD series under the¯MS running mass scheme, which simultaneously determines the correct magnitudes ofαs and the¯MS running mass¯mq of the perturbative series with the help of RGEs. By applying such formulas, we have obtained a scale-invariant¯MS -on-shell quark mass relation. Consequently, we have determined the top-quark on-shell or¯MS mass without conventional renormalization scale ambiguity. By setting the top-quark¯MS mass as¯mt(¯mt)=162.5+2.1−1.5 given in PDG as an input, we obtain the top-quark OS massMt|PMC=172.41+2.21−1.57 (GeV). It can be demonstrated that this result is characterized by a larger uncertainty than the experimental value, given that the input errorΔ¯mt(¯mt) still exhibits a larger magnitude. We have also inversely determined the top-quark¯MS mass¯mt(¯mt)=163.08+0.66−0.66 by using the top-quark OS massMt=172.5±0.7 GeV as input; the resultant prediction of the top-quark¯MS mass is more precise than the experimental value given in PDG.The accuracy of the pQCD prediction under the
¯MS running mass scheme strongly depends on the exact values ofαs and¯mq . After applying the PMC, the correct values of the effective\alpha_s and{{\overline{m}}}_q can be determined simultaneously, resulting in a more convergent pQCD series that leads to a much smaller residual scale dependence. Thus, a reliable and precise pQCD prediction can be achieved. This is also a useful method to determine the bottom-quark OS mass and charm-quark OS mass in the future. -
We thank Sheng-Quan Wang, Jian-Ming Shen, Jun Zeng and Qing Yu for helpful discussions.
-
The general scale displacement relations of the strong coupling constant
a_s and quark running mass\overline{m}_q up to fourth-order are\begin{aligned}[b]\\[-3pt] a^k_s(\mu_r) =\;& a^k_s(\mu_\delta) + k \beta_0 \delta a^{k+1}_s(\mu_\delta) + k \bigg(\beta_1 \delta + \frac{k+1}{2}\beta_0^2 \delta^2 \bigg) a^{k+2}_s(\mu_\delta) \delta\\ &+ k\bigg[\beta_2 +\frac{2k+3}{2}\beta_0\beta_1 \delta^2 +\frac{(k+1)(k+2)}{3!}\beta_0^3 \delta^3 \bigg]a^{k+3}_s(\mu_\delta)+{\rm{O}}[a^{k+4}_s(\mu_\delta)]. \end{aligned}\tag{A1} \begin{aligned}[b] {{\overline{m}}}_q^n(\mu_r)=\;& {{\overline{m}}}_q^n(\mu_\delta)\bigg\{1+n\gamma_0\delta a_s+\bigg[\frac{1}{2} \left(n\beta_0\gamma_0+n^2\gamma_0^2\right)\delta^2 +n\gamma_1\delta\bigg]a_s^2 +\bigg[n\gamma_2\delta+\frac{1}{2} (2n\beta_0\gamma_1 \\ &+ n\beta_1\gamma_0+2n^2\gamma_0\gamma_1)\delta^2+\frac{1}{3!}\bigg(2n\beta_0^2\gamma_0 +3n^2\beta_0\gamma_0^2+n^3\gamma_0^3\bigg)\delta^3\bigg]a_s^3 +\bigg[n\gamma_3\delta \\ &+\frac{1}{2}\bigg(3n\beta_0\gamma_2+2n \beta_1\gamma_1+n\beta_2\gamma_0+2n^2\gamma_0\gamma_2+n^2\gamma_1^2\bigg) \delta^2 +\frac{1}{3!} \bigg(6n\beta_0^2\gamma_1+5n\beta_0\beta_1\gamma_0 \\ &+9n^2\beta_0\gamma_0\gamma_1+3 n^2\beta_1\gamma_0^2+3n^3\gamma_0^2\gamma_1\bigg) \delta ^3 +\frac{1}{4!} \bigg(6n\beta_0^3\gamma_0+11n^2\beta_0^2\gamma_0^2+6n^3\beta_0\gamma_0^3 + n^4\gamma_0^4\bigg)\delta ^4 \bigg]a_s^4+{\rm{O}}(a^5_s)\bigg\}. \end{aligned}\tag{A2}
-
\begin{aligned}[b] \rho_\delta(Q^2)=\;& r_0 {{\overline{m}}}_q^n(\mu_{\delta}) \Big\{1+(r_1+n \gamma_0 \delta)a_s(\mu_{\delta}) + \Big[r_2+\beta_0r_1\delta+n(\gamma_1+\gamma_0r_1)\delta+\frac{n}{2}\beta_0\gamma_0\delta^2+\frac{n^2}{2}\gamma_0^2\delta^2 \Big] a^2_s(\mu_{\delta})\\ &+ \Big[r_3+\beta_1r_1\delta+2\beta_0r_2\delta+\beta_0^2r_1\delta^2+n(\gamma_2+\gamma_0r_2+\gamma_1r_1)\delta+n\beta_0 \Big(\gamma_1+\frac{3\gamma_0r_1}{2}\Big)\delta^2+\frac{n}{2}\beta_1\gamma_0\delta^2+\frac{n}{3}\beta_0^2\gamma_0\delta^3\\ &+n^2 \Big(\gamma_1\gamma_0+\frac{\gamma_0^2r_1}{2}\Big) \delta^2+\frac{n^2}{2}\beta_0\gamma_0^2\delta^3+\frac{n^3}{6}\gamma_0^3\delta^3 \Big] a^3_s(\mu_{\delta})+ \Big[r_4+(2\beta_1r_2+\beta_2r_1)\delta+3\beta_0r_3\delta+\frac{5}{2}\beta_0\beta_1r_1\delta^2+3\beta_0^2r_2\delta^2\\ &+\beta_0^3r_1\delta^3+n(\gamma_3+\gamma_0r_3+\gamma_1r_2+\gamma_2r_1)\delta+n\beta_0\Big(\frac{3\gamma_2}{2}+\frac{5\gamma_0r_2}{2}+2\gamma_1r_1\Big)\delta^2+ n \Big(\frac{\beta_2\gamma_0}{2}+\beta_1\gamma_1+\frac{3}{2}\beta_1\gamma_0r_1\Big)\delta^2\\ &+n\beta_0^2 \Big(\gamma_1+\frac{11\gamma_0r_1}{6}\Big)\delta^3+\frac{5n}{6}\beta_0\beta_1\gamma_0\delta^3+\frac{n}{4}\beta_0^3\gamma_0\delta^4+n^2 \Big(\gamma_2\gamma_0+\frac{\gamma_1^2}{2}+\frac{\gamma_0^2r_2}{2}+\gamma_1\gamma_0r_1\Big)\delta^2+n^2\beta_0 \Big(\frac{3\gamma_1\gamma_0}{2}+\gamma_0^2r_1\Big)\delta^3\\ &+\frac{n^2}{2}\beta_1\gamma_0^2\delta^3+\frac{11n^2}{24}\beta_0^2\gamma_0^2\delta^4+n^3 \Big(\frac{\gamma_1\gamma_0^2}{2}+\frac{\gamma_0^3r_1}{6}\Big)\delta^3+\frac{n^3}{4}\beta_0\gamma_0^3\delta^4+\frac{n^4}{24}\gamma_0^4\delta^4 \Big] a^4_s(\mu_{\delta})+{\rm{O}}[a^5_s(\mu_{\delta})]\Big\}. \end{aligned}\tag{B1}
-
\begin{aligned}[b] \rho(Q^2)=\;& r_0 {{\overline{m}}}_q^n(\mu_r)\Big\{1+ \Big({\hat r}_{1,0}+n\gamma_0\ln\frac{\mu_r^2}{Q^2}\Big) a_s(\mu_r) + \Big[{\hat r}_{2,0}+\beta_0{\hat r}_{2,1}+n\gamma_0{\hat r}_{2,1} +(\beta_0{\hat r}_{1,0}+n\gamma_1+n\gamma_0{\hat r}_{1,0})\ln\frac{\mu_r^2}{Q^2}\\ &+\frac{1}{2}(n\beta_0\gamma_0+n^2\gamma_0^2)\ln^2\frac{\mu_r^2}{Q^2}\Big] a^2_s(\mu_r) +\{{\hat r}_{3,0}+\beta_1{\hat r}_{2,1}+2\beta_0{\hat r}_{3,1}+\beta_0^2{\hat r}_{3,2}+n(\gamma_0{\hat r}_{3,1}+\gamma_1{\hat r}_{2,1})+\frac{3n}{2}\beta_0\gamma_0{\hat r}_{3,2}\\ &+\frac{n^2}{2}\gamma_0^2{\hat r}_{3,2}+[\beta_1{\hat r}_{1,0}+2\beta_0{\hat r}_{2,0}+2\beta_0^2{\hat r}_{2,1}+n(\gamma_2+\gamma_1{\hat r}_{1,0}+\gamma_0{\hat r}_{2,0}+3\beta_0\gamma_0{\hat r}_{2,1}+ n\gamma_0^2{\hat r}_{2,1})]\ln\frac{\mu_r^2}{Q^2}\\ &+ \Big[\beta_0^2{\hat r}_{1,0}+n(\beta_0\gamma_1+\frac{1}{2}\beta_1\gamma_0+\frac{3}{2}\beta_0\gamma_0{\hat r}_{1,0})+n^2(\gamma_0\gamma_1 +\frac{1}{2}\gamma_0^2{\hat r}_{1,0})\Big]\ln^2\frac{\mu_r^2}{Q^2}+\frac{1}{6}(2n\beta_0^2\gamma_0+3n^2\beta_0\gamma_0^2+n^3\gamma_0^3)\ln^3\frac{\mu_r^2}{Q^2}\Big\} a^3_s(\mu_r) \\ &+ \Big\{{\hat r}_{4,0}+\beta_2{\hat r}_{2,1}+2\beta_1{\hat r}_{3,1}+3\beta_0{\hat r}_{4,1}+\frac{5}{2}\beta_0\beta_1{\hat r}_{3,2}+3\beta_0^2{\hat r}_{4,2}+\beta_0^3{\hat r}_{4,3} + n\beta_0 \Big(2\gamma_1{\hat r}_{3,2}+\frac{5}{2}\gamma_0{\hat r}_{4,2}\Big)\\ &+n \Big(\frac{3}{2}\beta_1\gamma_0{\hat r}_{3,2}+\gamma_2{\hat r}_{2,1}+\gamma_1{\hat r}_{3,1}+\gamma_0{\hat r}_{4,1}\Big)+\frac{11n}{6}\beta_0^2\gamma_0{\hat r}_{4,3}+n^2 \Big(\frac{\gamma_0^2{\hat r}_{4,2}}{2}+\gamma_1\gamma_0{\hat r}_{3,2}\Big)+n^2\beta_0\gamma_0^2{\hat r}_{4,3}+\frac{n^3}{6}\gamma_0^3{\hat r}_{4,3}\\ &+ \Big[\beta_2{\hat r}_{1,0}+2\beta_1{\hat r}_{2,0}+3\beta_0{\hat r}_{3,0}+6\beta_0^2{\hat r}_{3,1}+3\beta_0^3{\hat r}_{3,2}+5\beta_1\beta_0{\hat r}_{2,1}+n \Big(\gamma_3+\gamma_2{\hat r}_{1,0}+\gamma_1{\hat r}_{2,0}+\gamma_0{\hat r}_{3,0}+\frac{11}{2}\beta_0^2\gamma_0{\hat r}_{3,2}\\ &+4\beta_0\gamma_1{\hat r}_{2,1}+5\beta_0\gamma_0{\hat r}_{3,1}+3\beta_1\gamma_0{\hat r}_{2,1}\Big)+n^2(3\beta_0\gamma_0^2{\hat r}_{3,2}+2\gamma_0\gamma_1{\hat r}_{2,1})+\frac{n^3}{2}\gamma_0^3{\hat r}_{3,2}\Big]\ln\frac{\mu_r^2}{Q^2}\\ &+ \Big[3\beta_0^2{\hat r}_{2,0}+3\beta_0^3{\hat r}_{2,1}+\frac{5}{2}\beta_0\beta_1{\hat r}_{1,0}+n \Big(\frac{3}{2}\beta_0\gamma_2+\beta_1\gamma_1+\frac{1}{2}\beta_2\gamma_0+\frac{3}{2}\beta_1\gamma_0{\hat r}_{1,0}+\frac{11}{2}\beta_0^2\gamma_0{\hat r}_{2,1}+2\beta_0\gamma_1{\hat r}_{1,0}+\frac{5}{2}\beta_0\gamma_0{\hat r}_{2,0}\Big)\\ &+ n^2\Big(\frac{1}{2}\gamma_1^2+\gamma_0\gamma_2+\gamma_0\gamma_1{\hat r}_{1,0}+\frac{1}{2}\gamma_0^2{\hat r}_{2,0}+3\beta_0\gamma_0^2{\hat r}_{2,1}\Big)+\frac{n^3}{2}\gamma_0^3{\hat r}_{2,1}\Big]\ln^2\frac{\mu_r^2}{Q^2}+ \Big[\beta_0^3{\hat r}_{1,0}+n\Big(\beta_0^2\gamma_1+\frac{11}{6}\beta_0^2\gamma_0{\hat r}_{1,0}+\frac{5}{6}\beta_0\beta_1\gamma_0\Big)\\ &+n^2\Big(\beta_0\gamma_0^2{\hat r}_{1,0}+\frac{1}{2}\beta_1\gamma_0^2+\frac{3}{2}\beta_0\gamma_0\gamma_1\Big)+n^3\Big(\frac{1}{6}\gamma_0^3{\hat r}_{1,0}+\frac{1}{2}\gamma_0^2\gamma_1\Big)\Big]\ln^3\frac{\mu_r^2}{Q^2}\\&+\Big(\frac{n}{4}\beta_0^3\gamma_0+\frac{11n^2}{24}\beta_0^2\gamma_0^2+\frac{n^3}{4}\beta_0\gamma_0^3+\frac{n^4}{24}\gamma_0^4\Big)\ln^4\frac{\mu_r^2}{Q^2}\Big\} a^4_s(\mu_r)+{\rm{O}}[a^5_s(\mu_r)\Big]\Big\}. \end{aligned}\tag{C1}
-
\begin{aligned}[b] r_3(\mu_r^2/Q^2)= {\hat r}_{3,0}+\beta_1{\hat r}_{2,1}+2\beta_0{\hat r}_{3,1}+\beta_0^2{\hat r}_{3,2}+n(\gamma_0{\hat r}_{3,1}+\gamma_1{\hat r}_{2,1})+\frac{3n}{2}\beta_0\gamma_0{\hat r}_{3,2}+\frac{n^2}{2}\gamma_0^2{\hat r}_{3,2}+[\beta_1{\hat r}_{1,0}+2\beta_0{\hat r}_{2,0}+2\beta_0^2{\hat r}_{2,1} \end{aligned}
\begin{aligned}[b] \quad\quad\quad\quad\quad\quad &+n(\gamma_2+\gamma_1{\hat r}_{1,0}+\gamma_0{\hat r}_{2,0}+3\beta_0\gamma_0{\hat r}_{2,1}+ n\gamma_0^2{\hat r}_{2,1})]\ln\frac{\mu_r^2}{Q^2}+[\beta_0^2{\hat r}_{1,0}+n(\beta_0\gamma_1+\frac{1}{2}\beta_1\gamma_0+\frac{3}{2}\beta_0\gamma_0{\hat r}_{1,0})\\ &+n^2(\gamma_0\gamma_1+\frac{1}{2}\gamma_0^2{\hat r}_{1,0})]\ln^2\frac{\mu_r^2}{Q^2}+\frac{1}{6}(2n\beta_0^2\gamma_0+3n^2\beta_0\gamma_0^2+n^3\gamma_0^3)\ln^3\frac{\mu_r^2}{Q^2}, \end{aligned}\tag{D1}
\begin{aligned}[b] r_4(\mu_r^2/Q^2)=\;& {\hat r}_{4,0}+\beta_2{\hat r}_{2,1}+2\beta_1{\hat r}_{3,1}+3\beta_0{\hat r}_{4,1}+\frac{5}{2}\beta_0\beta_1{\hat r}_{3,2}+3\beta_0^2{\hat r}_{4,2}+\beta_0^3{\hat r}_{4,3} + n\beta_0 \Big(2\gamma_1{\hat r}_{3,2}+\frac{5}{2}\gamma_0{\hat r}_{4,2}\Big)\\ &+n\Big(\frac{3}{2}\beta_1\gamma_0{\hat r}_{3,2}+\gamma_2{\hat r}_{2,1}+\gamma_1{\hat r}_{3,1}+\gamma_0{\hat r}_{4,1}\Big)+\frac{11n}{6}\beta_0^2\gamma_0{\hat r}_{4,3}+n^2\Big(\frac{\gamma_0^2{\hat r}_{4,2}}{2}+\gamma_1\gamma_0{\hat r}_{3,2}\Big)+n^2\beta_0\gamma_0^2{\hat r}_{4,3}+\frac{n^3}{6}\gamma_0^3{\hat r}_{4,3}\\ &+ \Big[\beta_2{\hat r}_{1,0}+2\beta_1{\hat r}_{2,0}+3\beta_0{\hat r}_{3,0}+6\beta_0^2{\hat r}_{3,1}+3\beta_0^3{\hat r}_{3,2}+5\beta_1\beta_0{\hat r}_{2,1}+n\Big(\gamma_3+\gamma_2{\hat r}_{1,0}+\gamma_1{\hat r}_{2,0}+\gamma_0{\hat r}_{3,0}\\ &+\frac{11}{2}\beta_0^2\gamma_0{\hat r}_{3,2}+4\beta_0\gamma_1{\hat r}_{2,1}+5\beta_0\gamma_0{\hat r}_{3,1}+3\beta_1\gamma_0{\hat r}_{2,1}\Big)+n^2(3\beta_0\gamma_0^2{\hat r}_{3,2}+2\gamma_0\gamma_1{\hat r}_{2,1})+\frac{n^3}{2}\gamma_0^3{\hat r}_{3,2}\Big]\ln\frac{\mu_r^2}{Q^2}\\ &+ \Big[3\beta_0^2{\hat r}_{2,0}+3\beta_0^3{\hat r}_{2,1}+\frac{5}{2}\beta_0\beta_1{\hat r}_{1,0}+n\Big(\frac{3}{2}\beta_0\gamma_2+\beta_1\gamma_1+\frac{1}{2}\beta_2\gamma_0+\frac{3}{2}\beta_1\gamma_0{\hat r}_{1,0}+\frac{11}{2}\beta_0^2\gamma_0{\hat r}_{2,1}+2\beta_0\gamma_1{\hat r}_{1,0}+\frac{5}{2}\beta_0\gamma_0{\hat r}_{2,0}\Big)\\ &+ n^2\Big(\frac{1}{2}\gamma_1^2+\gamma_0\gamma_2+\gamma_0\gamma_1{\hat r}_{1,0}+\frac{1}{2}\gamma_0^2{\hat r}_{2,0}+3\beta_0\gamma_0^2{\hat r}_{2,1}\Big)+\frac{n^3}{2}\gamma_0^3{\hat r}_{2,1}\Big]\ln^2\frac{\mu_r^2}{Q^2} +\Big[\beta_0^3{\hat r}_{1,0}+n\Big(\beta_0^2\gamma_1+\frac{11}{6}\beta_0^2\gamma_0{\hat r}_{1,0}\\ &+\frac{5}{6}\beta_0\beta_1\gamma_0\Big)+n^2\Big(\beta_0\gamma_0^2{\hat r}_{1,0}+\frac{1}{2}\beta_1\gamma_0^2+\frac{3}{2}\beta_0\gamma_0\gamma_1\Big)+n^3\Big(\frac{1}{6}\gamma_0^3{\hat r}_{1,0}+\frac{1}{2}\gamma_0^2\gamma_1\Big)\Big]\ln^3\frac{\mu_r^2}{Q^2}\\ &+\Big(\frac{n}{4}\beta_0^3\gamma_0+\frac{11n^2}{24}\beta_0^2\gamma_0^2+\frac{n^3}{4}\beta_0\gamma_0^3+\frac{n^4}{24}\gamma_0^4\Big)\ln^4\frac{\mu_r^2}{Q^2}. \end{aligned}\tag{D2}
-
It is possible to infer some degenerate relations from Eq. (B1). For example, the coefficients of
\beta_0 a_s^2 ,n\gamma_0 a_s^2 ,\beta_1 a_s^3 ,n\gamma_1 a_s^3 ,\beta_2 a_s^4 , andn\gamma_2 a_s^4 are the same, namelyr_1\delta . By substitutingr_i\delta^j \rightarrow r_{i+j,j} , the expression for ρ at\mu_r=Q can be rewritten as\begin{aligned}[b] \rho(Q^2)=\;& r_0 {{\overline{m}}}_q^n(Q)\Big\{1+{\hat r}_{1,0}a_s(Q) +\left({\hat r}_{2,0}+\beta_0{\hat r}_{2,1}+n\gamma_0{\hat r}_{2,1}\right)a^2_s(Q)+\Big[{\hat r}_{3,0}+\beta_1{\hat r}_{2,1}+2\beta_0{\hat r}_{3,1}+\beta_0^2{\hat r}_{3,2}+n(\gamma_0{\hat r}_{3,1}+\gamma_1{\hat r}_{2,1})+\frac{3n}{2}\beta_0\gamma_0{\hat r}_{3,2}\\ &+\frac{n^2}{2}\gamma_0^2{\hat r}_{3,2}\Big]a^3_s(Q)+ \Big[{\hat r}_{4,0}+\beta_2{\hat r}_{2,1}+2\beta_1{\hat r}_{3,1}+3\beta_0{\hat r}_{4,1}+\frac{5}{2}\beta_0\beta_1{\hat r}_{3,2}+3\beta_0^2{\hat r}_{4,2}+\beta_0^3{\hat r}_{4,3}+n\beta_0 \Big(2\gamma_1{\hat r}_{3,2}+\frac{5}{2}\gamma_0{\hat r}_{4,2}\Big)\\ &+n\Big(\frac{3}{2}\beta_1\gamma_0{\hat r}_{3,2}+\gamma_2{\hat r}_{2,1}+\gamma_1{\hat r}_{3,1}+\gamma_0{\hat r}_{4,1}\Big)+\frac{11n}{6}\beta_0^2\gamma_0{\hat r}_{4,3}+n^2\Big(\frac{\gamma_0^2{\hat r}_{4,2}}{2}+\gamma_1\gamma_0{\hat r}_{3,2}\Big)\\ &+n^2\beta_0\gamma_0^2{\hat r}_{4,3}+\frac{n^3}{6}\gamma_0^3{\hat r}_{4,3}\Big]a^4_s(Q)+{\rm{O}}[a^5_s(Q)]\Big\}. \end{aligned}\tag{E1}
A pQCD calculation prediction for a physical observable at
\mu_r=Q is\rho(Q^2)= r_0{{\overline{m}}}_q^n(Q) \bigg[1+\sum\limits_{k=1}^{\infty} \left(\sum\limits_{l=0}^{k-1} c_{k,l} n_f^{l}\right) a_s^k(Q)\bigg]. \tag{E2}
Comparing Eq. (E1) with Eq. (E2) for each order, the coefficients of the
n_f series can be matched to ther_{i,j} coefficients in a unique manner. More explicitly, one can derive the relations betweenc_{k,l} andr_{i,j} by using the\beta_i and\gamma_i coefficients given in [70, 72]; e.g., it is easy to find that{\hat r}_{1,0}=c_{1,0} . Substituting\beta_0=11-\frac{2}{3}n_f and\gamma_0=4 into thea_s^2 -order coefficient of Eq. (E1), we can findr_{2,0} andr_{2,1} :c_{2,0}+c_{2,1}n_f={\hat r}_{2,0}+\left(11-\frac{2}{3}n_f\right){\hat r}_{2,1}+4n{\hat r}_{2,1}, \tag{E3}
which leads to
{\hat r}_{1,0}= c_{1,0}, \tag{E4}
{\hat r}_{2,0}= c_{2,0}+\left(6n+\frac{33}{2}\right)c_{2,1},\; {\hat r}_{2,1}=-\frac{3}{2}c_{2,1}. \tag{E5}
Following the same procedures, one can derive these relations up to any order. In the present paper, we use the relations up to fourth order:
\begin{aligned}[b]{\hat r}_{3,0}=\;&c_{3,0}+\left(3n+\frac{33}{2}\right)c_{3,1}+\left(9n^2+99n+\frac{1089}{4}\right)c_{3,2}-\left(10n^2+11n+\frac{321}{2}\right)c_{2,1},\\ {\hat r}_{3,1}=\;& -\frac{3}{4}c_{3,1}-\frac{27n+99}{4}c_{3,2}+\frac{10n+57}{4}c_{2,1},\; {\hat r}_{3,2}=\frac{9}{4}c_{3,2}, \end{aligned}\tag{E6}
\begin{aligned}[b]{\hat r}_{4,0}=\;& c_{4,0}+\left(2n+\frac{33}{2}\right)c_{4,1}+\left(4n^2+66n+\frac{1089}{4}\right)c_{4,2}+\Bigg(8n^3+198n^2+\frac{3267n}{2}+\frac{35937}{8}\Bigg)c_{4,3}\\ &-\left(\frac{50n^3}{3}+185n^2+\frac{2595n}{2}+\frac{10593}{2}\right)c_{3,2}-\left(\frac{10n^2}{3}+15n+\frac{321}{2}\right)c_{3,1}\\ &+\left(\frac{20n^3}{27}-160\zeta_3n^2-\frac{2411n^2}{9}-\frac{860n}{3}-1320\zeta_3n+\frac{11675}{16}\right)c_{2,1}, \end{aligned}\tag{E7}
\begin{aligned}[b]{\hat r}_{4,1}=\;& -\frac{1}{2}c_{4,1}-\frac{1}{2}\left(5n+33\right)c_{4,2}-\left(\frac{19n^2}{2}+\frac{495n}{4}+\frac{3267}{8}\right)c_{4,3}+\left(\frac{5n}{6}+\frac{19}{2}\right)c_{3,1}+\left(\frac{85n^2}{6}+\frac{401n}{4}+\frac{4113}{8}\right)c_{3,2}\\ &+\left(\frac{100n^2}{27}+40\zeta_3n+\frac{2467n}{72}-\frac{479}{4}\right)c_{2,1}, \end{aligned}\tag{E8}
{\hat r}_{4,2}= \frac{3}{4}c_{4,2}+\left(\frac{33n}{4}+\frac{297}{8}\right)c_{4,3}-\left(5n+\frac{285}{8}\right)c_{3,2}+\left(\frac{325}{48}-\frac{35n}{18}\right)c_{2,1}, \tag{E9}
{\hat r}_{4,3} = -\frac{27}{8}c_{4,3}. \tag{E10}
Note that one must treat the
n_f terms which are not related to renormalization of the running coupling and running mass as part of the conformal coefficient; e.g., then_f terms coming from the light-by-light diagrams in QCD belong to the conformal series. The contributions of light-by-light diagrams are always established separately, given that the light-by-light diagrams can be easily distinguished from the other Feynman diagrams. -
\begin{aligned}[b]r_{\rm 3, NonConf.}(Q_*)= \beta_1{\hat r}_{2,1}+2\beta_0{\hat r}_{3,1}+\beta_0^2{\hat r}_{3,2}+n(\gamma_0{\hat r}_{3,1}+\gamma_1{\hat r}_{2,1})+\frac{3n}{2}\beta_0\gamma_0{\hat r}_{3,2}+\frac{n^2}{2}\gamma_0^2{\hat r}_{3,2}+\Big[\beta_1{\hat r}_{1,0}+2\beta_0{\hat r}_{2,0}+2\beta_0^2{\hat r}_{2,1} \end{aligned}
\begin{aligned}[b]\qquad\qquad\qquad &+n(\gamma_2+\gamma_1{\hat r}_{1,0}+\gamma_0{\hat r}_{2,0}+3\beta_0\gamma_0{\hat r}_{2,1}+ n\gamma_0^2{\hat r}_{2,1})\Big]\ln\frac{Q_*^2}{Q^2}+\Big[\beta_0^2{\hat r}_{1,0}+n\Big(\beta_0\gamma_1+\frac{1}{2}\beta_1\gamma_0+\frac{3}{2}\beta_0\gamma_0{\hat r}_{1,0}\Big)\\ &+n^2(\gamma_0\gamma_1+\frac{1}{2}\gamma_0^2{\hat r}_{1,0})\Big]\ln^2\frac{Q_*^2}{Q^2}+\frac{1}{6}(2n\beta_0^2\gamma_0+3n^2\beta_0\gamma_0^2+n^3\gamma_0^3)\ln^3\frac{Q_*^2}{Q^2}, \end{aligned}\tag{F1}
\begin{aligned}[b]r_{\rm 4, NonConf.}(Q_*)=\;& \beta_2{\hat r}_{2,1}+2\beta_1{\hat r}_{3,1}+3\beta_0{\hat r}_{4,1}+\frac{5}{2}\beta_0\beta_1{\hat r}_{3,2}+3\beta_0^2{\hat r}_{4,2}+\beta_0^3{\hat r}_{4,3} + n\beta_0\Big(2\gamma_1{\hat r}_{3,2}+\frac{5}{2}\gamma_0{\hat r}_{4,2}\Big)\\ &+n\Big(\frac{3}{2}\beta_1\gamma_0{\hat r}_{3,2}+\gamma_2{\hat r}_{2,1}+\gamma_1{\hat r}_{3,1}+\gamma_0{\hat r}_{4,1}\Big)+\frac{11n}{6}\beta_0^2\gamma_0{\hat r}_{4,3}+n^2\Big(\frac{\gamma_0^2{\hat r}_{4,2}}{2}+\gamma_1\gamma_0{\hat r}_{3,2}\Big)+n^2\beta_0\gamma_0^2{\hat r}_{4,3}\\ &+\frac{n^3}{6}\gamma_0^3{\hat r}_{4,3}+ \Big[\beta_2{\hat r}_{1,0}+2\beta_1{\hat r}_{2,0}+3\beta_0{\hat r}_{3,0}+6\beta_0^2{\hat r}_{3,1}+3\beta_0^3{\hat r}_{3,2}+5\beta_1\beta_0{\hat r}_{2,1}+n(\gamma_3+\gamma_2{\hat r}_{1,0}+\gamma_1{\hat r}_{2,0}\\ &+\gamma_0{\hat r}_{3,0}+\frac{11}{2}\beta_0^2\gamma_0{\hat r}_{3,2}+4\beta_0\gamma_1{\hat r}_{2,1}+5\beta_0\gamma_0{\hat r}_{3,1}+3\beta_1\gamma_0{\hat r}_{2,1})+n^2(3\beta_0\gamma_0^2{\hat r}_{3,2}+2\gamma_0\gamma_1{\hat r}_{2,1})+\frac{n^3}{2}\gamma_0^3{\hat r}_{3,2}\Big]\ln\frac{Q_*^2}{Q^2}\\ &+\Big[3\beta_0^2{\hat r}_{2,0}+3\beta_0^3{\hat r}_{2,1}+\frac{5}{2}\beta_0\beta_1{\hat r}_{1,0}+n\Big(\frac{3}{2}\beta_0\gamma_2+\beta_1\gamma_1+\frac{1}{2}\beta_2\gamma_0+\frac{3}{2}\beta_1\gamma_0{\hat r}_{1,0}+\frac{11}{2}\beta_0^2\gamma_0{\hat r}_{2,1}+2\beta_0\gamma_1{\hat r}_{1,0}+\frac{5}{2}\beta_0\gamma_0{\hat r}_{2,0}\Big)\\ &+ n^2\Big(\frac{1}{2}\gamma_1^2+\gamma_0\gamma_2+\gamma_0\gamma_1{\hat r}_{1,0}+\frac{1}{2}\gamma_0^2{\hat r}_{2,0}+3\beta_0\gamma_0^2{\hat r}_{2,1}\Big)+\frac{n^3}{2}\gamma_0^3{\hat r}_{2,1}\Big]\ln^2\frac{Q_*^2}{Q^2}\\ &+\Big[\beta_0^3{\hat r}_{1,0}+n\Big(\beta_0^2\gamma_1+\frac{11}{6}\beta_0^2\gamma_0{\hat r}_{1,0}+\frac{5}{6}\beta_0\beta_1\gamma_0\Big)+n^2\Big(\beta_0\gamma_0^2{\hat r}_{1,0}+\frac{1}{2}\beta_1\gamma_0^2+\frac{3}{2}\beta_0\gamma_0\gamma_1\Big)\\ &+n^3\Big(\frac{1}{6}\gamma_0^3{\hat r}_{1,0}+\frac{1}{2}\gamma_0^2\gamma_1\Big)\Big]\ln^3\frac{Q_*^2}{Q^2}+\Big(\frac{n}{4}\beta_0^3\gamma_0+\frac{11n^2}{24}\beta_0^2\gamma_0^2+\frac{n^3}{4}\beta_0\gamma_0^3+\frac{n^4}{24}\gamma_0^4\Big)\ln^4\frac{Q_*^2}{Q^2}. \end{aligned}\tag{F2}
-
\begin{aligned}[b] S_3=\;& {\hat r}_{1,0}{\hat r}_{3,1}-{\hat r}_{1,0}^2{\hat r}_{2,1}+{\hat r}_{2,0}{\hat r}_{2,1}-{\hat r}_{4,1}+\frac{n\gamma_0}{2}({\hat r}_{2,1}^2+{\hat r}_{1,0}{\hat r}_{3,2}-{\hat r}_{4,2})-\frac{n\gamma_1{\hat r}_{3,2}}{2}-\frac{n^2\gamma_0^2{\hat r}_{4,3}}{6} -\frac{\beta_2{\hat r}_{2,1}}{n\gamma_0}\\ &+\beta_1\Big(\frac{\gamma_1{\hat r}_{2,1}}{n\gamma_0^2}+\frac{2{\hat r}_{1,0}{\hat r}_{2,1}-2{\hat r}_{3,1}}{n\gamma_0}-\frac{3{\hat r}_{3,2}}{2}\Big)+\beta_0\beta_1\Big(\frac{2{\hat r}_{1,0}{\hat r}_{2,1}}{n^2\gamma_0^2}-\frac{5{\hat r}_{3,2}}{2n\gamma_0}\Big) +\beta_0\bigg(\frac{5{\hat r}_{2,1}^2}{2}-n\gamma_0{\hat r}_{4,3}-\frac{5{\hat r}_{4,2}}{2}+2{\hat r}_{1,0}{\hat r}_{3,2}-\frac{\gamma_1^2{\hat r}_{2,1}}{n\gamma_0^3}\\ &+\frac{\gamma_2{\hat r}_{2,1}+2\gamma_1{\hat r}_{3,1}-2\gamma_1{\hat r}_{1,0}{\hat r}_{2,1}}{n\gamma_0^2} -\frac{n\gamma_1{\hat r}_{3,2}+6{\hat r}_{2,1}{\hat r}_{1,0}^2-6{\hat r}_{3,1}{\hat r}_{1,0}-6{\hat r}_{2,0}{\hat r}_{2,1}+6{\hat r}_{4,1}}{2n\gamma_0}\bigg)+\beta_0^2\bigg(\frac{7{\hat r}_{2,1}^2+5{\hat r}_{1,0}{\hat r}_{3,2}-6{\hat r}_{4,2}}{2n\gamma_0}\\ &+\frac{n\gamma_1{\hat r}_{3,2}-3{\hat r}_{2,1}{\hat r}_{1,0}^2+2{\hat r}_{3,1}{\hat r}_{1,0}+2{\hat r}_{2,0}{\hat r}_{2,1}}{n^2\gamma_0^2}-\frac{2\gamma_1{\hat r}_{1,0}{\hat r}_{2,1}}{n^3\gamma_0^3}-\frac{11{\hat r}_{4,3}}{6}\bigg)+\beta_0^3\Big(\frac{3{\hat r}_{2,1}^2+2{\hat r}_{1,0}{\hat r}_{3,2}}{2n^2\gamma_0^2}-\frac{{\hat r}_{2,1}{\hat r}_{1,0}^2}{n^3\gamma_0^3}-\frac{{\hat r}_{4,3}}{n\gamma_0}\Big). \end{aligned}\tag{G1}
Precise determination of the top-quark on-shell mass Mt via its scale- invariant perturbative relation to the top-quark ¯MS mass ¯mt(¯mt)
- Received Date: 2024-01-18
- Available Online: 2024-05-15
Abstract: The principle of maximum conformality (PMC) provides a systematic approach to solve the conventional renormalization scheme and scale ambiguities. Scale-fixed predictions of physical observables using the PMC are independent of the choice of renormalization scheme – a key requirement for renormalization group invariance. In this paper, we derive new degeneracy relations based on the renormalization group equations that involve both the usual β-function and the quark mass anomalous dimension