×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Identification of Primary γ-Rays in ARGO Experiment at Yangbajing Using ANNS

Get Citation
MA Li-Na, FENG Cun-Feng, ZHANG Yao and ZHANG Xue-Rao. Identification of Primary γ-Rays in ARGO Experiment at Yangbajing Using ANNS[J]. Chinese Physics C, 2005, 29(5): 485-490.
MA Li-Na, FENG Cun-Feng, ZHANG Yao and ZHANG Xue-Rao. Identification of Primary γ-Rays in ARGO Experiment at Yangbajing Using ANNS[J]. Chinese Physics C, 2005, 29(5): 485-490. shu
Milestone
Received: 2004-09-08
Revised: 1900-01-01
Article Metric

Article Views(1759)
PDF Downloads(597)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Identification of Primary γ-Rays in ARGO Experiment at Yangbajing Using ANNS

    Corresponding author: MA Li-Na,
  • School of Physics and Microelectronics Shandong University, Ji’nan 250100,China

Abstract: The lateral distributions, as measured by ARGO array, of the extensive air showers induced by γ and hadrons with energy range from 100GeV to 10 TeV, zenith angle from 0° to 45°, were studied using Monte Carlo generated data. Several parameters such as average lateral distribution, minimum tree length and so on, which could be used to the difference of the lateral distributions between the showers induced by γ and hadrons were obtained. These parameters were used as the input for an artificial neural network, which was then trained to study the γ/hadron discrimination power. The result indicated that using this method could effectively separate the showers induced by γ-rays and hadrons.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return