×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

Periodic Orbits and Trace Formula-Integrable Systems

  • The two-dimensional uncoupled quartic oscillator was chosen to test the validity of the Berry-Tabor trace formula. Periodic orbits of the system were calculated by integrating Hamiltonian equations of motion on reasonable tori and the curvatures on the energy surface were obtained by carefully constructing the orbits around the reasonable tori. Finally, the value of the semiclassical action function and that of the quantum action function in the case S<30 were compared, and the good agreement between the two functions indicates the validity of the trace formula. On the other hand, in the quantum action function RQM(S,E)-S figuration, that peaks appeared at the action values corresponding to the periodic orbits of the classical system provide rich information on quantum-classical correspondence.
  • 加载中
  • [1] . Gutzwiller M C .J.Math.Phys.,1967,8:1979—2000. 2. Berry,Tabor.Proc.R .Soc.Lond.,1976,A349:101—123. 3. Berry.Proc.R .Soc.Lond.,1985,A400:229—251. 4. Ozorio de Almeida A M ,Hannay J H .J.Phys.,1987,A20:5873—5883. 5. Ullmo Denis,Grinberg Maurice,Tomsovic Steven.Phys.Rev.,1996,E54:136—152. 6. Main J,Wunner Gunter.Phys.Rev.Lett.,1999,82:3038—3041. 7. Main J.Phys.Rep.,1999,316:233—338. 8. Berry M V ,Tabor M .J.Phys.,1977,A10:371—379. 9. Bohigas O ,Tomsovic S,Ullmo M .Phys.Rep.,1993,223(2):43—133 10. Quigg C ,Rosner Jonathan L .Phys.Rep.,1979,56(4):167—235
  • 加载中

Get Citation
SONG Jian-Jun, LI Xi-Guo, LIU Fang and LI Shu-Wei. Periodic Orbits and Trace Formula-Integrable Systems[J]. Chinese Physics C, 2001, 25(9): 872-876.
SONG Jian-Jun, LI Xi-Guo, LIU Fang and LI Shu-Wei. Periodic Orbits and Trace Formula-Integrable Systems[J]. Chinese Physics C, 2001, 25(9): 872-876. shu
Milestone
Received: 2000-08-16
Revised: 1900-01-01
Article Metric

Article Views(2862)
PDF Downloads(610)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Periodic Orbits and Trace Formula-Integrable Systems

    Corresponding author: SONG Jian-Jun,
  • Institute of Modern Physics, The Chinese Academy of Sciences, Lanzhou 730000, China2 Research Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Collision, Lanzhou 730000, China3 Institute of Modern Physics, Northwest University, Xi′an 710069, China

Abstract: The two-dimensional uncoupled quartic oscillator was chosen to test the validity of the Berry-Tabor trace formula. Periodic orbits of the system were calculated by integrating Hamiltonian equations of motion on reasonable tori and the curvatures on the energy surface were obtained by carefully constructing the orbits around the reasonable tori. Finally, the value of the semiclassical action function and that of the quantum action function in the case S<30 were compared, and the good agreement between the two functions indicates the validity of the trace formula. On the other hand, in the quantum action function RQM(S,E)-S figuration, that peaks appeared at the action values corresponding to the periodic orbits of the classical system provide rich information on quantum-classical correspondence.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return