Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition

  • Operator decomposition approach is used to calculate the non-adiabatic geometric phase of anharmonic oscillator. As an example we focus on isotonic oscillator, a type of anharmonic oscillator. The Aharonov-Anandan phase is derived when we choose base state and the first excitation state as cyclic initial states. Then we generalize our result by choosing three states or more states as cyclic initial states. Finally we give an general formula of Aharonov-Anandan phase for time-independent systems and discuss its applicability.
  • 加载中
  • [1] . Berry M V. Proc. R. Soc. , 1984, A392: 45-572. Berry M V. J. Phys. A: Math. Gen. , 1985, 18: 15-273. Aharonov Y, Anandan J. Phys. Rev. Lett. , 1987, 20: 1593-15964. Moore D J. Phys. Rep. , 1991, 1: 1-435. Galogero F. J. Math. Phys. , 1969, 10: 2191-21966. Zhu D. J. Phys, 1987, A20: 4331-43367. XU Zi-Wen. Acta Physica Sinica, 1996, 45: 1807-1811 (in Chinese)(徐子二物理学报,1996,45:1807-1811)8. CHEN Chang-Yuan, LIU You-Wen. Acta Physica Sinica, 1998, 47:536-541 (in Chinese)(陈昌远,刘友文.物理学报,1998,47:536-541)
  • 加载中

Get Citation
An Nan and YANG Xin-E. Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition[J]. Chinese Physics C, 2005, 29(4): 350-353.
An Nan and YANG Xin-E. Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition[J]. Chinese Physics C, 2005, 29(4): 350-353. shu
Milestone
Received: 2004-07-12
Revised: 2004-08-07
Article Metric

Article Views(2930)
PDF Downloads(592)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Calculation and Generalization of Non-Adiabatic Geometric Phase of Isotonic Oscillator with Operator Decomposition

    Corresponding author: An Nan,
  • Department of physics,School of Science,Tianjin University,Tianjin 300072,China

Abstract: Operator decomposition approach is used to calculate the non-adiabatic geometric phase of anharmonic oscillator. As an example we focus on isotonic oscillator, a type of anharmonic oscillator. The Aharonov-Anandan phase is derived when we choose base state and the first excitation state as cyclic initial states. Then we generalize our result by choosing three states or more states as cyclic initial states. Finally we give an general formula of Aharonov-Anandan phase for time-independent systems and discuss its applicability.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return