# Gauge dependence of the perturbative QCD predictions under the momentum space subtraction scheme

• The momentum space subtraction (MOM) scheme is one of the most frequently used renormalization schemes in perturbative QCD (pQCD) theory. In the paper, we make a detailed discussion on the gauge dependence of the pQCD prediction under the MOM scheme. Conventionally, there is renormalization scale ambiguity for the fixed-order pQCD predictions, which assigns an arbitrary range and an arbitrary error for the fixed-order pQCD prediction and makes the discussions on the issue of the gauge dependence much more involved. The principle of maximum conformality (PMC) adopts the renormalization group equation to determine the magnitude of the coupling constant and hence determines an effective momentum flow of the process, which is independent to the choice of renormalization scale. There is thus no renormalization scale ambiguity in PMC predictions. To concentrate our attention on the MOM gauge dependence, we first apply the PMC to deal with the pQCD series. We adopt the Higgs boson decay width, $\Gamma(H\to gg)$ , up to five-loop QCD contributions as an explicit example to show how the gauge dependence behaves before and after applying the PMC. Different interaction vertices have been chosen for defining the MOM-schemes such as the mMOM, the MOMh, the MOMq, the MOMg, and the MOMgg schemes. Under those MOM schemes, we obtain $\Gamma(H \to gg)|^{\rm{mMOM}}_{\rm{PMC}} = 332.8{^{+11.6}_{-3.7}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMh}}_{\rm{PMC}} = 332.8{^{+27.5}_{-34.6}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMq}}_{\rm{PMC}} = 332.9{^{+27.4}_{-34.7}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMg}}_{\rm{PMC}} = 332.7{^{+27.5}_{-34.6}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMgg}}_{\rm{PMC}} = 337.9{^{+1.2}_{-1.7}}\pm 7.7\; \rm{KeV}$ , where the central values are for the Landau gauge with the gauge parameter $\xi^{\rm MOM} = 0$ , and the first errors are for $\xi^{\rm MOM}\in[-1,1]$ , the second ones are caused by taking $\Delta \alpha_s^{\overline{\rm MS}}(M_Z) = \pm0.0011$ . The uncertainty of the Higgs mass $\Delta M_H = 0.24\; \rm{GeV}$ will cause an extra error $\sim \pm1.7$ (or $\sim\pm1.8$ ) KeV for all the mentioned MOM schemes. It is found that the Higgs decay width $\Gamma (H\to gg)$ depends very weakly on the choices of the MOM schemes, being consistent with the renormalization group invariance. It is found that the gauge dependence of $\Gamma(H\to gg)$ under the $\rm{MOMgg}$ scheme is less than ±1%, which is the smallest gauge dependence among all the mentioned MOM schemes.
•  [1] D. J. Gross and F. Wilczek, Phys. Rev. Lett., 30: 1343 (1973) doi: 10.1103/PhysRevLett.30.1343 [2] H. D. Politzer, Phys. Rev. Lett., 30: 1346 (1973) doi: 10.1103/PhysRevLett.30.1346 [3] W. Celmaster and R. J. Gonsalves, Phys. Rev. Lett., 42: 1435 (1979) doi: 10.1103/PhysRevLett.42.1435 [4] W. Celmaster and R. J. Gonsalves, Phys. Rev. D, 20: 1420 (1979) doi: 10.1103/PhysRevD.20.1420 [5] W. Celmaster and R. J. Gonsalves, Phys. Rev. Lett., 44: 560 (1980) doi: 10.1103/PhysRevLett.44.560 [6] W. Celmaster and R. J. Gonsalves, Phys. Rev. D, 21: 3112 (1980) doi: 10.1103/PhysRevD.21.3112 [7] L. von Smekal, K. Maltman and A. Sternbeck, Phys. Lett. B, 681: 336 (2009) doi: 10.1016/j.physletb.2009.10.030 [8] J. A. Gracey, J. Phys. A, 46: 225403 (2013) doi: 10.1088/1751-8113/46/22/225403 [9] G. ’t Hooft, Nucl. Phys. B, 61: 455 (1973) doi: 10.1016/0550-3213(73)90376-3 [10] E. Braaten and J. P. Leveille, Phys. Rev. D, 24: 1369 (1981) doi: 10.1103/PhysRevD.24.1369 [11] K. G. Chetyrkin and A. Retey, hep-ph/0007088. [12] P. Boucaud, J. P. Leroy, J. Micheli, O. Pene and C. Roiesnel, JHEP, 9812: 004 (1998) [13] D. Becirevic, P. Boucaud, J. P. Leroy, J. Micheli, O. Pene, J. Rodriguez-Quintero and C. Roiesnel, Phys. Rev. D, 60: 094509 (1999) doi: 10.1103/PhysRevD.60.094509 [14] W. A. Bardeen, A. J. Buras, D. W. Duke and T. Muta, Phys. Rev. D, 18: 3998 (1978) doi: 10.1103/PhysRevD.18.3998 [15] W. E. Caswell, Phys. Rev. Lett., 33: 244 (1974) doi: 10.1103/PhysRevLett.33.244 [16] D. R. T. Jones, Nucl. Phys. B, 75: 531 (1974) doi: 10.1016/0550-3213(74)90093-5 [17] O. V. Tarasov, A. A. Vladimirov and A. Y. Zharkov, Phys. Lett. B, 93: 429 (1980) doi: 10.1016/0370-2693(80)90358-5 [18] S. A. Larin and J. A. M. Vermaseren, Phys. Lett. B, 303: 334 (1993) doi: 10.1016/0370-2693(93)91441-O [19] T. van Ritbergen, J. A. M. Vermaseren and S. A. Larin, Phys. Lett. B, 400: 379 (1997) doi: 10.1016/S0370-2693(97)00370-5 [20] K. G. Chetyrkin, Nucl. Phys. B, 710: 499 (2005) doi: 10.1016/j.nuclphysb.2005.01.011 [21] M. Czakon, Nucl. Phys. B, 710: 485 (2005) doi: 10.1016/j.nuclphysb.2005.01.012 [22] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, Phys. Rev. Lett., 118: 082002 (2017) doi: 10.1103/PhysRevLett.118.082002 [23] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, JHEP, 1702: 090 (2017) [24] T. Luthe, A. Maier, P. Marquard and Y. Schröder, JHEP, 1710: 166 (2017) [25] B. A. Kniehl, A. V. Kotikov, A. I. Onishchenko and O. L. Veretin, Phys. Rev. Lett., 97: 042001 (2006) doi: 10.1103/PhysRevLett.97.042001 [26] B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, JHEP, 1706: 040 (2017) [27] K. Hagiwara and T. Yoshino, Phys. Rev. D, 26: 2038 (1982) doi: 10.1103/PhysRevD.26.2038 [28] K. G. Chetyrkin, G. Falcioni, F. Herzog and J. A. M. Vermaseren, JHEP 1710, 179 (2017); Addendum: [JHEP 1712, 006 (2017)]. [29] M. Tanabashi et al.[Particle Data Group], Phys. Rev. D, 98: 030001 (2018) [30] D. M. Zeng, S. Q. Wang, X. G. Wu and J. M. Shen, J. Phys. G, 43: 075001 (2016) doi: 10.1088/0954-3899/43/7/075001 [31] J. Zeng, X. G. Wu, S. Bu, J. M. Shen and S. Q. Wang, J. Phys. G, 45: 085004 (2018) doi: 10.1088/1361-6471/aace6f [32] J. A. Gracey, Phys. Rev. D, 90: 094026 (2014) doi: 10.1103/PhysRevD.90.094026 [33] A. L. Kataev and V. S. Molokoedov, Phys. Rev. D, 92: 054008 (2015) doi: 10.1103/PhysRevD.92.054008 [34] M. Binger and S. J. Brodsky, Phys. Rev. D, 74: 054016 (2006) doi: 10.1103/PhysRevD.74.054016 [35] S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov and G. B. Pivovarov, JETP Lett., 70: 155 (1999) doi: 10.1134/1.568145 [36] S. J. Brodsky, V. S. Fadin, V. T. Kim, L. N. Lipatov and G. B. Pivovarov, JETP Lett., 76: 249 (2002) doi: 10.1134/1.1520615 [37] X. C. Zheng, X. G. Wu, S. Q. Wang, J. M. Shen and Q. L. Zhang, JHEP, 1310: 117 (2013) [38] F. Caporale, D. Y. Ivanov, B. Murdaca and A. Papa, Phys. Rev. D, 91: 114009 (2015) doi: 10.1103/PhysRevD.91.114009 [39] A. Deur, J. M. Shen, X. G. Wu, S. J. Brodsky and G. F. de Teramond, Phys. Lett. B, 773: 98 (2017) doi: 10.1016/j.physletb.2017.07.024 [40] S. J. Brodsky and H. J. Lu, Phys. Rev. D, 51: 3652 (1995) doi: 10.1103/PhysRevD.51.3652 [41] T. Inami, T. Kubota and Y. Okada, Z. Phys. C, 18: 69 (1983) doi: 10.1007/BF01571710 [42] A. Djouadi, M. Spira and P. M. Zerwas, Phys. Lett. B, 264: 440 (1991) doi: 10.1016/0370-2693(91)90375-Z [43] D. Graudenz, M. Spira and P. M. Zerwas, Phys. Rev. Lett., 70: 1372 (1993) doi: 10.1103/PhysRevLett.70.1372 [44] S. Dawson and R. Kauffman, Phys. Rev. D, 49: 2298 (1994) doi: 10.1103/PhysRevD.49.2298 [45] M. Spira, A. Djouadi, D. Graudenz and P. M. Zerwas, Nucl. Phys. B, 453: 17 (1995) doi: 10.1016/0550-3213(95)00379-7 [46] S. Dawson and R. P. Kauffman, Phys. Rev. Lett., 68: 2273 (1992) doi: 10.1103/PhysRevLett.68.2273 [47] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Phys. Rev. Lett., 79: 353 (1997) doi: 10.1103/PhysRevLett.79.353 [48] K. G. Chetyrkin, B. A. Kniehl and M. Steinhauser, Nucl. Phys. B, 510: 61 (1998) [49] P. A. Baikov and K. G. Chetyrkin, Phys. Rev. Lett., 97: 061803 (2006) doi: 10.1103/PhysRevLett.97.061803 [50] F. Herzog, B. Ruijl, T. Ueda, J. A. M. Vermaseren and A. Vogt, JHEP, 1708: 113 (2017) [51] Y. Ma and X. G. Wu, Phys. Rev. D, 97: 036024 (2018) doi: 10.1103/PhysRevD.97.036024 [52] S. J. Brodsky and X. G. Wu, Phys. Rev. Lett., 109: 042002 (2012) doi: 10.1103/PhysRevLett.109.042002 [53] S. J. Brodsky and X. G. Wu, Phys. Rev. D, 85: 034038 (2012) doi: 10.1103/PhysRevD.85.034038 [54] S. J. Brodsky and L. Di Giustino, Phys. Rev. D, 86: 085026 (2012) doi: 10.1103/PhysRevD.86.085026 [55] M. Mojaza, S. J. Brodsky and X. G. Wu, Phys. Rev. Lett., 110: 192001 (2013) doi: 10.1103/PhysRevLett.110.192001 [56] S. J. Brodsky, M. Mojaza and X. G. Wu, Phys. Rev. D, 89: 014027 (2014) doi: 10.1103/PhysRevD.89.014027 [57] G. Grunberg, Phys. Lett., 95B: 70 (1980) [58] G. Grunberg, Phys. Rev. D, 29: 2315 (1984) doi: 10.1103/PhysRevD.29.2315 [59] P. M. Stevenson, Phys. Lett., 100B: 61 (1981) [60] P. M. Stevenson, Phys. Rev. D, 23: 2916 (1981) [61] P. M. Stevenson, Nucl. Phys. B, 203: 472 (1982) doi: 10.1016/0550-3213(82)90325-X [62] P. M. Stevenson, Nucl. Phys. B, 231: 65 (1984) doi: 10.1016/0550-3213(84)90307-9 [63] Y. Ma, X. G. Wu, H. H. Ma and H. Y. Han, Phys. Rev. D, 91: 034006 (2015) doi: 10.1103/PhysRevD.91.034006 [64] S. V. Mikhailov, JHEP, 0706: 009 (2007) [65] A. L. Kataev and S. V. Mikhailov, Phys. Rev. D, 91: 014007 (2015) doi: 10.1103/PhysRevD.91.014007 [66] H. H. Ma, X. G. Wu, Y. Ma, S. J. Brodsky and M. Mojaza, Phys. Rev. D, 91: 094028 (2015) doi: 10.1103/PhysRevD.91.094028 [67] S. J. Brodsky and X. G. Wu, Phys. Rev. D, 86: 054018 (2012) doi: 10.1103/PhysRevD.86.054018 [68] X. G. Wu, S. J. Brodsky and M. Mojaza, Prog. Part. Nucl. Phys., 72: 44 (2013) doi: 10.1016/j.ppnp.2013.06.001 [69] X. G. Wu, Y. Ma, S. Q. Wang, H. B. Fu, H. H. Ma, S. J. Brodsky and M. Mojaza, Rept. Prog. Phys., 78: 126201 (2015) doi: 10.1088/0034-4885/78/12/126201 [70] X. G. Wu, S. Q. Wang and S. J. Brodsky, Front. Phys., 11: 111201 (2016) doi: 10.1007/s11467-015-0518-5 [71] X. G. Wu, J. M. Shen, B. L. Du, X. D. Huang, S. Q. Wang and S. J. Brodsky, Prog. Part. Nucl. Phys., 108: 103706 (2019) doi: 10.1016/j.ppnp.2019.05.003 [72] G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B, 44: 189 (1972) doi: 10.1016/0550-3213(72)90279-9 [73] A. J. Buras, hep-ph/9806471. [74] D. J. Gross and F. Wilczek, Phys. Rev. D, 8: 3633 (1973) doi: 10.1103/PhysRevD.8.3633 [75] W. E. Caswell and F. Wilczek, Phys. Lett. B, 49: 291 (1974) [76] G. ’t Hooft, Nucl. Phys. B, 33: 173 (1971) doi: 10.1016/0550-3213(71)90395-6 [77] G. ’t Hooft and M. J. G. Veltman, Nucl. Phys. B, 50: 318 (1972) doi: 10.1016/S0550-3213(72)80021-X [78] A. A. Slavnov, Theor. Math. Phys., 10: 99 (1972) doi: 10.1007/BF01090719 [79] J. C. Taylor, Nucl. Phys. B, 33: 436 (1971) doi: 10.1016/0550-3213(71)90297-5 [80] A. V. Garkusha, A. L. Kataev and V. S. Molokoedov, JHEP, 1802: 161 (2018) [81] H. Y. Bi, X. G. Wu, Y. Ma, H. H. Ma, S. J. Brodsky and M. Mojaza, Phys. Lett. B, 748: 13 (2015) doi: 10.1016/j.physletb.2015.06.056 [82] J. M. Shen, X. G. Wu, B. L. Du and S. J. Brodsky, Phys. Rev. D, 95: 094006 (2017) doi: 10.1103/PhysRevD.95.094006 [83] X. G. Wu, J. M. Shen, B. L. Du and S. J. Brodsky, Phys. Rev. D, 97: 094030 (2018) doi: 10.1103/PhysRevD.97.094030 [84] CMS Collaboration[CMS Collaboration], CMS-PAS-TOP-12-001. [85] The ATLAS and CMS Collaborations[ATLAS Collaboration], ATLAS-CONF-2012-095. [86] G. Aad et al.[ATLAS and CMS Collaborations], Phys. Rev. Lett., 114: 191803 (2015) doi: 10.1103/PhysRevLett.114.191803 [87] S. Dittmaier et al.[LHC Higgs Cross Section Working Group], CERN-2011-002. [88] K. G. Chetyrkin and T. Seidensticker, Phys. Lett. B, 495: 74 (2000) doi: 10.1016/S0370-2693(00)01217-X [89] J. A. Gracey, Phys. Rev. D, 84: 085011 (2011) doi: 10.1103/PhysRevD.84.085011

Figures(13) / Tables(3)

Get Citation
Jun Zeng, Xing-Gang Wu, Xu-Chang Zheng and Jian-Ming Shen. Gauge dependence of the perturbative QCD predictions under the momentum space subtraction scheme[J]. Chinese Physics C.
Jun Zeng, Xing-Gang Wu, Xu-Chang Zheng and Jian-Ming Shen. Gauge dependence of the perturbative QCD predictions under the momentum space subtraction scheme[J]. Chinese Physics C.
Milestone
Article Metric

Article Views(92)
Cited by(0)
Policy on re-use
To reuse of Open Access content published by CPC, for content published under the terms of the Creative Commons Attribution 3.0 license (“CC CY”), the users don’t need to request permission to copy, distribute and display the final published version of the article and to create derivative works, subject to appropriate attribution.
###### 通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

Title:
Email:

## Gauge dependence of the perturbative QCD predictions under the momentum space subtraction scheme

###### Corresponding author: Jian-Ming Shen, cqusjm@cqu.edu.cn
• 1. Department of Physics, Chongqing University, Chongqing 401331, P. R. China
• 2. School of Physics and Electronics, Hunan University, Changsha 410082, P. R. China

Abstract: The momentum space subtraction (MOM) scheme is one of the most frequently used renormalization schemes in perturbative QCD (pQCD) theory. In the paper, we make a detailed discussion on the gauge dependence of the pQCD prediction under the MOM scheme. Conventionally, there is renormalization scale ambiguity for the fixed-order pQCD predictions, which assigns an arbitrary range and an arbitrary error for the fixed-order pQCD prediction and makes the discussions on the issue of the gauge dependence much more involved. The principle of maximum conformality (PMC) adopts the renormalization group equation to determine the magnitude of the coupling constant and hence determines an effective momentum flow of the process, which is independent to the choice of renormalization scale. There is thus no renormalization scale ambiguity in PMC predictions. To concentrate our attention on the MOM gauge dependence, we first apply the PMC to deal with the pQCD series. We adopt the Higgs boson decay width, $\Gamma(H\to gg)$ , up to five-loop QCD contributions as an explicit example to show how the gauge dependence behaves before and after applying the PMC. Different interaction vertices have been chosen for defining the MOM-schemes such as the mMOM, the MOMh, the MOMq, the MOMg, and the MOMgg schemes. Under those MOM schemes, we obtain $\Gamma(H \to gg)|^{\rm{mMOM}}_{\rm{PMC}} = 332.8{^{+11.6}_{-3.7}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMh}}_{\rm{PMC}} = 332.8{^{+27.5}_{-34.6}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMq}}_{\rm{PMC}} = 332.9{^{+27.4}_{-34.7}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMg}}_{\rm{PMC}} = 332.7{^{+27.5}_{-34.6}}\pm7.3\; \rm{KeV}$ , $\Gamma(H \to gg)|^{\rm{MOMgg}}_{\rm{PMC}} = 337.9{^{+1.2}_{-1.7}}\pm 7.7\; \rm{KeV}$ , where the central values are for the Landau gauge with the gauge parameter $\xi^{\rm MOM} = 0$ , and the first errors are for $\xi^{\rm MOM}\in[-1,1]$ , the second ones are caused by taking $\Delta \alpha_s^{\overline{\rm MS}}(M_Z) = \pm0.0011$ . The uncertainty of the Higgs mass $\Delta M_H = 0.24\; \rm{GeV}$ will cause an extra error $\sim \pm1.7$ (or $\sim\pm1.8$ ) KeV for all the mentioned MOM schemes. It is found that the Higgs decay width $\Gamma (H\to gg)$ depends very weakly on the choices of the MOM schemes, being consistent with the renormalization group invariance. It is found that the gauge dependence of $\Gamma(H\to gg)$ under the $\rm{MOMgg}$ scheme is less than ±1%, which is the smallest gauge dependence among all the mentioned MOM schemes.

Reference (89)

/