×
近期发现有不法分子冒充我刊与作者联系,借此进行欺诈等不法行为,请广大作者加以鉴别,如遇诈骗行为,请第一时间与我刊编辑部联系确认(《中国物理C》(英文)编辑部电话:010-88235947,010-88236950),并作报警处理。
本刊再次郑重声明:
(1)本刊官方网址为cpc.ihep.ac.cn和https://iopscience.iop.org/journal/1674-1137
(2)本刊采编系统作者中心是投稿的唯一路径,该系统为ScholarOne远程稿件采编系统,仅在本刊投稿网网址(https://mc03.manuscriptcentral.com/cpc)设有登录入口。本刊不接受其他方式的投稿,如打印稿投稿、E-mail信箱投稿等,若以此种方式接收投稿均为假冒。
(3)所有投稿均需经过严格的同行评议、编辑加工后方可发表,本刊不存在所谓的“编辑部内部征稿”。如果有人以“编辑部内部人员”名义帮助作者发稿,并收取发表费用,均为假冒。
                  
《中国物理C》(英文)编辑部
2024年10月30日

THE COLLECTIVE EXCITATION SPECTRA IN EVEN-EVEN DEFORMED NUCLEI (Ⅰ) THEORETICAL FORMULATION

  • Starting from the Bohr Hamiltonian we investigate the spectrum of well-deformed nucleus of which the axial asymmetry is not too large. To diagonalize the Bohr Hamiltonian a suitable potential with certain singularity is assumed and the terms of (sin43γ) in the rotational energy operator expanded in powers of sin 3γ are omitted. The usually adopted adiabatic approximation is given up in present treatment. It is shown that the nuclear collective excitation spectrum manifests the vibrational-rotational band structure and can be described by a convenient closed formula. Within a vibrational-rotational band the moment of inertia and the deformation no longer remain constant and the energy spectrum deviates from the I(I+1) rule in varying degrees.
  • 加载中
  • [1] A. Bohr, Nobel Lectures, 1975, Rotational Motion in Xuclei Nordita Publications, No. 632.[2] A. Bohr, Rotational States of Atomic Nuclei, Murksgaard, Copenhagen (1954).[3] A. Bohr and B. R. Mottelson, Nuclear Structure, Vol. I1 (Benjamin, New York, 1975).[4] F. S. Stephens, N. L. Lark and R. M. Diamond, Phys. Rev. Lett., 12(1964), 225.[5] F. S. Stephens, N. L. Lark and R. M. Diamond, Nucl. Phys., 63(1965), 82.[6] S. M. Harris, Phys. Rev. Lett., 13(1964), 663; Phys. Rev., 158(1965), B509.[7]φ Saethre, S. A. Hjorth, A. Johnson, S. Jagare, H. Ryde and Z. Szymanski, Nucl. Phys., A207(1973), 486.[8] B. R. Mottelson, Proc. Intern. Conf. on High Spin Phenomena in Nuclei, Argonne, 1979, ANL/PHY-79-4, p. 1.[9] M. A. J. Mariscotti, G. Scharff-Goldhaber and B. Buck, Phys. Rev., 178(1969), 1864.G. Scharff-Goldhaber, C. Dover and A. L. Goodman, Ann. Rev. Nucl. Sci., 26 (1976), 239.[10] 吴崇试、曾谨言, 待发表.[11] 吴崇试、曾谨言, 待发表.[12] 吴崇试、曾谨言, 待发表.[13] A. Bohr, Dan. Mat. Fys. Medd., 26(1952), no. 14.[14] A. Bohr and B. R. Mottelson, Dan. Mat. Fys. Medd., 27(1953), no. 16.[15] A. S. Davydov and G. F. Filippov, Nucl. Phys., 8(1958), 237.[16] K. Kumar and M. Baranger, Nucl. Phys. A92(1967), 608.[17] G. Gneuss and W. Greiner, Nucl. Phys., A171(1971), 449.[18] L. Wilets and M. Jean, Phys. Rev., 102(1956), 788.[19] F. M. Arscott, Periodic Differential Equations (Pergamon Press, 1964), ch. VIII.[20] A. N. Lowan, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ed. M. Abramowitz and I. A. Stegun, p. 751.[21] 王竹溪、郭敦仁, 特殊函数概论, 科学出版社, 1965年, 第361页.[22] W. Magnus, F. Oberhettinger and R. P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics (Springer-Verlag, 1966), p. 239.
  • 加载中

Get Citation
WU Chong-Shi and ZENG Jin-Yan. THE COLLECTIVE EXCITATION SPECTRA IN EVEN-EVEN DEFORMED NUCLEI (Ⅰ) THEORETICAL FORMULATION[J]. Chinese Physics C, 1984, 8(2): 219-226.
WU Chong-Shi and ZENG Jin-Yan. THE COLLECTIVE EXCITATION SPECTRA IN EVEN-EVEN DEFORMED NUCLEI (Ⅰ) THEORETICAL FORMULATION[J]. Chinese Physics C, 1984, 8(2): 219-226. shu
Milestone
Received: 1900-01-01
Revised: 1900-01-01
Article Metric

Article Views(2600)
PDF Downloads(461)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

THE COLLECTIVE EXCITATION SPECTRA IN EVEN-EVEN DEFORMED NUCLEI (Ⅰ) THEORETICAL FORMULATION

    Corresponding author: WU Chong-Shi,

Abstract: Starting from the Bohr Hamiltonian we investigate the spectrum of well-deformed nucleus of which the axial asymmetry is not too large. To diagonalize the Bohr Hamiltonian a suitable potential with certain singularity is assumed and the terms of (sin43γ) in the rotational energy operator expanded in powers of sin 3γ are omitted. The usually adopted adiabatic approximation is given up in present treatment. It is shown that the nuclear collective excitation spectrum manifests the vibrational-rotational band structure and can be described by a convenient closed formula. Within a vibrational-rotational band the moment of inertia and the deformation no longer remain constant and the energy spectrum deviates from the I(I+1) rule in varying degrees.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return