Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate

  • Electric and magnetic screenings of the thermal gluons are studied by using the background expansion method in a gluodynamic model with gauge invariant dimension-2 gluon condensate at zero momentum. At low temperature, the electric and magnetic gluons are degenerate. With the increase of temperature, it is found that the electric and magnetic gluons start to split at certain temperature T0. The electric screening mass changes rapidly with temperature when T > T0, and the Polyakov loop expectation value rises sharply around T0 from zero in the vacuum to a value around 0.8 at high temperature. This suggests that the color electric deconfinement phase transition is driven by electric gluons. It is also observed that the magnetic screening mass keeps almost the same as its vacuum value, which manifests that the magnetic gluons remain confined. Both the screening masses and the Polyakov loop results are qualitatively in agreement with the Lattice calculations.
      PCAS:
  • 加载中
  • [1] Nambu Y. Phys. Rev., 1960, 117: 648-663[2] Nambu Y. In Symmetries and Quark Models. Ed. Chand R, Gordon and Breach. 1970; Nambu Y. Phys. Rev. D, 1974, 10: 4262; Submitted to the 15th International Conference on High Energy Physics. Kiev, 1970; Nielsen H B, Olesen P. Nucl. Phys. B, 1973, 61: 45; Susskind L. Nuovo Cim. A, 1970, 69: 457[3] 't Hooft. Nucl. Phys. B, 1981, 190: 455; Mandelstam. Phys. Rep. C, 1976, 23: 245[4] 't Hooft G. Nucl. Phys. B, 1978, 138: 1[5] Greensite J. Eur. Phys. J. ST, 2007, 140: 1[6] Polyakov A M. Phys. Lett. B, 1978, 72: 477[7] Fukushima K. Phys. Lett. B, 2004, 591: 277; Ratti C, Thaler M A, Weise W. Phys. Rev. D, 2006, 73: 014019; Sasaki C, Friman B, Redlich K. Phys. Rev. D, 2007, 75: 074013; Schaefer B J, Pawlowski J M, Wambach J. Phys. Rev. D, 2007, 76: 074023; MAO H, JIN J, HUANG M. J. Phys. G, 2010, 37: 035001[8] Shifman M A, Vainshtein A I, Zakharov V I. Nucl. Phys. B, 1979, 147: 385-447; 1979, 147: 448-518[9] Boyd G, Engels J, Karsch F, Laermann E, Legeland C, Lutgemeier M, Petersson B. Nucl. Phys. B, 1996, 469: 419-444. [hep-lat/9602007][10] Schafer T, Shuryak E V. Rev. Mod. Phys., 1998, 70: 323-426 [hep-ph/9610451][11] Lavelle M J, Schaden M. Phys. Lett. B, 1988, 208: 297[12] Lavelle M, Oleszczuk M. Mod. Phys. Lett. A, 1992, 7: 3617-3630[13] Gubarev F V, Stodolsky L, Zakharov V I. Phys. Rev. Lett., 2001, 86: 2220-2222. [hep-ph/0010057][14] Verschelde H, Knecht K, van Acoleyen K, Vanderkelen M. Phys. Lett. B, 2001, 516: 307-313. [hep-th/0105018][15] Chetyrkin K G, Narison S, Zakharov V I. Nucl. Phys. B, 1999, 550: 353-374. [hep-ph/9811275][16] Gubarev F V, Zakharov V I. Phys. Lett. B, 2001, 501: 28-36. [hep-ph/0010096][17] Kondo K I. Phys. Lett. B, 2001, 514: 335. [arXiv:hep-th/0105299][18] Slavnov A A. Theor. Math. Phys., 2005, 143: 489; Teor. Mat. Fiz., 2005, 143: 3. [arXiv:hep-th/0407194][19] Blossier B, Boucaud P, Brinet M, de Soto F, LIU Z, Morenas V, Pene O, Petrov K et al. Phys. Rev. D, 2011, 83: 074506; Blossier B, Boucaud P, Brinet M, de Soto F, DU X, Gravina M, LIU Z, Morenas V et al. arXiv:1111.3023 [hep-lat][20] Boucaud P, Le Yaouanc A, Leroy J P, Micheli J, Pene O, Rodriguez-Quintero J. Phys. Rev. D, 2001, 63: 114003. [arXiv:hep-ph/0101302][21] Dudal D, Verschelde H, Gracey J A, Lemes V E R, Sarandy M S, Sobreiro R F, Sorella S P. JHEP, 2004, 0401: 044. [hep-th/0311194][22] Dudal D, Verschelde H, Browne R E, Gracey J A. Phys. Lett. B, 2003, 562: 87-96. [hep-th/0302128][23] Megias E, Ruiz Arriola E, Salcedo L L. JHEP, 2006, 0601: 073. [arXiv:hep-ph/0505215][24] Andreev O, Zakharov V I. Phys. Rev. D, 2006, 74: 025023. [arXiv:hep-ph/0604204][25] HE S, HUANG M, YAN Q S. Phys. Rev. D, 2011, 83: 045034; LI D, HE S, HUANG M, YAN Q S. JHEP, 2011, 1109: 041. [arXiv:1103.5389 [hep-th]][26] Chernodub M N, Ilgenfritz E M. Phys. Rev. D, 2008, 78: 034036. [arXiv:0805.3714 [hep-lat]][27] Vercauteren D, Verschelde H. Phys. Rev. D, 2010, 82: 085026. [arXiv:1007.2789 [hep-th]][28] GAO M. Phys. Rev. D, 1990, 41: 626[29] Heller U M, Karsch F, Rank J. Phys. Rev. D, 1998, 57: 1438-1448. [hep-lat/9710033][30] Kaczmarek O, Karsch F, Laermann E, Lutgemeier M. Phys. Rev. D, 2000, 62: 034021. [hep-lat/9908010][31] Kraemmer U, Rebhan A. Rept. Prog. Phys., 2004, 67: 351. [hep-ph/0310337][32] Chakraborty P, Mustafa M G, Thoma M H. arXiv:1109.1971 [hep-ph][33] Bowman P O, Heller U M, Leinweber D B, Parappilly M B, Williams A G. Phys. Rev. D, 2004, 70: 034509. [hep-lat/0402032][34] Kaczmarek O, Karsch F, Zantow F, Petreczky P. Phys. Rev. D, 2004, 70: 074505. [hep-lat/0406036]; Kaczmarek O, Zantow F. Phys. Rev. D, 2005, 71: 114510. [hep-lat/0503017][35] Peshier A. [hep-ph/0601119][36] Nakamura A, Saito T, Sakai S. Phys. Rev. D, 2004, 69: 014506. [hep-lat/0311024][37] Maezawa Y et al. (WHOT-QCD collaboration). Phys. Rev. D, 2010, 81: 091501. [arXiv:1003.1361 [hep-lat]][38] Fischer C S, Alkofer R. Phys. Rev. D, 2003, 67: 094020. [arXiv:hep-ph/0301094][39] Fischer C S, Maas A, Muller J A. Eur. Phys. J. C, 2010, 68: 165. [arXiv:1003.1960 [hep-ph]]; Cucchieri A, Maas A, Mendes T. Phys. Rev. D, 2007, 75: 076003. [arXiv:hep-lat/0702022][40] Celenza L S, Shakin C M. Phys. Rev. D, 1986, 34: 1591[41] LI X D, Shakin C M. Phys. Rev. D, 2005, 71: 074007. [arXiv:hep-ph/0410404][42] Savvidy G K. Phys. Lett. B, 1977, 71: 133[43] Nielsen N K, Olesen P. Nucl. Phys. B, 1978, 144: 376[44] Kondo K I. Phys. Lett. B, 2004, 600: 287. [arXiv:hep-th/0404252][45] Vercauteren D, Verschelde H. Phys. Lett. B, 2008, 660: 432. [arXiv:0712.0570 [hep-th]][46] Kapusta J I. Finite Temperature Field Theory. Cambridge: Cambridge University Press, 1989[47] Le Bellac M. Thermal Field Theory. Cambridge: Cambridge University Press, 1996[48] Roberts C D, Schmidt S M. Prog. Part. Nucl. Phys., 2000, 45: S1-S103. [nucl-th/0005064]; Alkofer R, von Smekal L. Phys. Rept., 2001, 353: 281. [arXiv:hep-ph/0007355]; Maris P, Roberts C D. Int. J. Mod. Phys. E, 2003, 12: 297. [arXiv:nucl-th/0301049][49] Geshkenbein B V. Sov. J. Nucl. Phys., 1990, 51: 719-725; Yndurain F J. Phys. Rept., 1999, 320: 287. [arXiv:hep-ph/9903457]; Ioffe B L, Zyablyuk K N. Eur. Phys. J. C, 2003, 27: 229-241. [hep-ph/0207183]; Zyablyuk K. JHEP, 2003, 0301: 081. [arXiv:hep-ph/0210103]; Samsonov A. [arXiv:hep-ph/0407199][50] Boyd G, Miller D E. arXiv:hep-ph/9608482[51] Giacomo A Di, Rossi G C. Phys. Lett. B, 1981, 100: 481; Giacomo A Di, Paffuti G. Phys. Lett. B, 1982, 108: 327[52] Ioffe B L. Phys. Atom. Nucl., 2003, 66: 30-43. [hep-ph/0207191][53] Hietanen A, Kajantie K, Laine M, Rummukainen K, Schroder Y. JHEP, 2005, 0501: 013. [arXiv:hep-lat/0412008][54] Schmidt S M, Blaschke D, Kalinovsky Y L. Phys. Rev. C, 1994, 50: 435-446; Gocke C, Blaschke D, Khalatyan A, Grigorian H. [hep-ph/0104183]; Grigorian H. Phys. Part. Nucl. Lett., 2007, 4: 223-231. [hep-ph/0602238]; Gomez Dumm D, Scoccola N N. Phys. Rev. D, 2002, 65: 074021. [arXiv:hep-ph/0107251][55] Gava E, Jengo R. Phys. Lett. B, 1981, 105: 285[56] Kaczmarek O, Karsch F, Petreczky P, Zantow F. Phys. Lett. B, 2002, 543: 41-47. [hep-lat/0207002]
  • 加载中

Get Citation
XU Fu-Kun and HUANG Mei. Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate[J]. Chinese Physics C, 2013, 37(1): 014103. doi: 10.1088/1674-1137/37/1/014103
XU Fu-Kun and HUANG Mei. Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate[J]. Chinese Physics C, 2013, 37(1): 014103.  doi: 10.1088/1674-1137/37/1/014103 shu
Milestone
Received: 2012-04-28
Revised: 1900-01-01
Article Metric

Article Views(692)
PDF Downloads(420)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Electric and magnetic screenings of gluons in a model with dimension-2 gluon condensate

Abstract: Electric and magnetic screenings of the thermal gluons are studied by using the background expansion method in a gluodynamic model with gauge invariant dimension-2 gluon condensate at zero momentum. At low temperature, the electric and magnetic gluons are degenerate. With the increase of temperature, it is found that the electric and magnetic gluons start to split at certain temperature T0. The electric screening mass changes rapidly with temperature when T > T0, and the Polyakov loop expectation value rises sharply around T0 from zero in the vacuum to a value around 0.8 at high temperature. This suggests that the color electric deconfinement phase transition is driven by electric gluons. It is also observed that the magnetic screening mass keeps almost the same as its vacuum value, which manifests that the magnetic gluons remain confined. Both the screening masses and the Polyakov loop results are qualitatively in agreement with the Lattice calculations.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return