A dynamical approach to the exterior geometry of a perfect fluid as a relativistic star

  • In this article, we assume that a cold charged perfect fluid is constructing a spherical relativistic star. Our purpose is the investigation of the dynamical properties of its exterior geometry, through simulating the geodesic motion of a charged test-particle, while moving on the star.
      PCAS:
  • 加载中
  • [1] Straumann N, Bieri L. Discovering the Expanding Universe. Cambridge: Cambridge University Press, 2009[2] Zel'dovich Ya B, Novikov I D. Relativistic Astrophysics, Vol. I: Stars and Relativity. Chicago: University of Chicago Press, 1971[3] Guilfoyle B S. Gen. Rel. Grav., 1999, 31: 1645[4] ZHAI Xiang-Hau, YAUN Ning-Yi, LI Xin-Zhou. Chin. Phys. Lett., 1999, 16(5): 321[5] Blaga P, Mioc V. Europhys. Lett., 1992, 17(3): 275[6] Stuchlik Z. Bull. Astron. Inst. Czechosl., 1983, 34: 129[7] Jorge C, Crispino Luís C B, Rodrigo R M et al. Braz. J. Phys., 2005, 35(4B)[8] Prasanna A R, Vishveshwara C V. Pramana, 1978, 11(4): 359[9] Chandrasekhar S. The Mathematical Theory of Black Holes. New York: Oxford University Press, 1983[10] Hackmann E, Lmmerzahl C. Phys. Rev. Lett., 2008, 100: 171101[11] Hackmann E, Kagramanova V, Kunz J et al. Phys. Rev. D. 2008, 78: 124018[12] Hackmann E, Kagramanova V, Kunz J et al. Europhys. Lett., 2009, 88: 30008[13] Hackmann E, Lmmerzahl C, Kagramanova V et al. Phys. Rev. D, 2010, 81: 044020[14] Hackmann E, Hartmann B, Lmmerzahl C et al. Phys. Rev. D, 2010, 81: 064016[15] Kagramanova V, Kunz J, Hackmann E et al. Phys. Rev. D, 2010, 81: 124044[16] Hackmann E, Hartmann B, Lmmerzahl C et al. Phys. Rev. D, 2010, 82: 044024[17] Hackmann E, Lmmerzahl C. Phys. Rev. D, 2012, 85: 044049[18] Wald Robert M. General Relativity. London: The University of Chicago Press, 1984[19] Nakahara M. Geometry, Topology and Physics. Second Edition. London: Ihstitute of Physics (IOP), 2003[20] Misner C W, Thorne K S, Wheeler J A. Gravitation. Freeman, 1973[21] Greiner W. Classical Mechanics: Sytem of Particles and Hamiltonian Dynamics. New York: Springer-Verlag, 2003[22] Weyl H. Ann. Phys. (Berlin), 1917, 359: 117[23] Lemos José P S, Zanchin Vilson T. Phys. Rev. D, 2010, 81: 124016[24] Majumdar S D. Phys. Rev., 1947, 72: 390[25] Papapetrou A. Proc. R. Irish Acad. A, 1947, 51: 191[26] Schutz Bernard F. A First Course in General Relativity. Second Edition. Cambridge: Cambridge University Press, 2009
  • 加载中

Get Citation
Mohsen Fathi. A dynamical approach to the exterior geometry of a perfect fluid as a relativistic star[J]. Chinese Physics C, 2013, 37(2): 025101. doi: 10.1088/1674-1137/37/2/025101
Mohsen Fathi. A dynamical approach to the exterior geometry of a perfect fluid as a relativistic star[J]. Chinese Physics C, 2013, 37(2): 025101.  doi: 10.1088/1674-1137/37/2/025101 shu
Milestone
Received: 2012-03-27
Revised: 2012-05-30
Article Metric

Article Views(2077)
PDF Downloads(237)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

A dynamical approach to the exterior geometry of a perfect fluid as a relativistic star

    Corresponding author: Mohsen Fathi,
  • Department of Physics, Islamic Azad University, Central Tehran Branch, Tehran, Iran

Abstract: In this article, we assume that a cold charged perfect fluid is constructing a spherical relativistic star. Our purpose is the investigation of the dynamical properties of its exterior geometry, through simulating the geodesic motion of a charged test-particle, while moving on the star.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return