Two-body Spinless Salpeter equation for the Woods-Saxon potential

  • The two-body Spinless Salpeter equation for the Woods-Saxon potential is solved by using the supersymmetry quantum mechanics (SUSYQM). In our calculations, we have applied an approximation to the centrifugal barrier. Energy eigenvalues and the corresponding eigenfunctions are computed for various values of quantum numbers n, l.
      PCAS:
  • 加载中
  • [1] Salpeter E E, Bethe H A. Phys. Rev., 1951, 84: 1232[2] Wick G C. Phys. Rev., 1954, 96: 1124[3] Maris P, Roberts C D. Int. J. Mod. Phys. E, 2003, 12: 297[4] Chang L, Roberts C D. Phys. Rev. Lett., 2009, 103: 081601[5] Maris P, Roberts C D. Phys. Rev. C, 1997, 56: 3369[6] Nakanishi N. Prog. Theor. Phys. Suppl., 1969, 43: 1[7] Lucha W, Schoberl F F. Int. J. Mod. Phys. A, 1999, 14: 2309[8] Lucha W, Schoberl F F. Fiz. B, 1999, 8: 193[9] Lucha W, Schoberl F F. Int. J. Mod. Phys. A, 2002, 17: 2233[10] Lucha W, Schoberl F F. Phys. Rev. A, 1996, 54: 3790[11] Lucha W, Schoberl F F. Int. J. Mod. Phys. A, 2000, 15: 3221[12] Lucha W, Schoberl F F. Phys. Rev. D, 1994, 50: 5443[13] Hassanabadi S et al. Mod. Phys. Lett. A, 2012, 27: 1250057[14] Erkol H, Demiralp E. Phys. Lett. A, 2007, 365: 55[15] Woods R D, Saxon D S. Phys. Rev., 1954, 95: 577[16] Williams W S C. Nuclear and Particle Physics. Oxford: Claren-don, 1996[17] Walz M et al. J. Phys. G: Nucl. Phys., 1988, 14: L91[18] Garcia F et al. Eur. Phys. J. A, 1999, 6: 49[19] Bespalova V et al. J. Phys. G: Nucl. Part. Phys., 2003, 29: 1193[20] Dasgupta M et al. Prog. Theor. Phys. Suppl., 2004, 154: 209[21] Sadeghi J, Pahlavani M R. Afr. J. Math. Phys., 2004, 1: 195[22] Khounfais K et al. Chech. J. Phys., 2004, 54: 697[23] Newton J O et al. Phys. Rev. C, 2004, 70: 024605[24] GUO J Y, SHENG Q. Phys. Lett. A, 2005, 338: 90[25] Diaz-Torres A, Scheid W. Nucl. Phys. A, 2005, 757: 373[26] Badalov V H et al. arXiv:0905.2731v1 [math-ph][27] Cooper F et al. Phys. Rep., 1995, 251: 267[28] Junker G. Supersymmetric Methods in Quantum and Statistical Physics. New York: Springer-Verlag, 1996[29] Bagchi B. Supersymmetry in quantum and classical mechanics, Chapman and Hall/CRC 2000[30] Zarrinkamar S et al. Phys. Scr., 2011, 84: 065008[31] Zarrinkamar S et al. Few-Body Sys., 2011, 52: 165[32] Berkdemir C. Nuclear Physics A, 2006, 770: 32[33] LU L L et al. Few-Body Syst., 2012, 53: 573[34] Zarrinkamar S et al. Mod. Phys. Lett. A, 2011, 26: 1621
  • 加载中

Get Citation
M. Ghominejad, B. H. Yazarloo, S. Zarrinkamar and H. Hassanabadi. Two-body Spinless Salpeter equation for the Woods-Saxon potential[J]. Chinese Physics C, 2013, 37(8): 083102. doi: 10.1088/1674-1137/37/8/083102
M. Ghominejad, B. H. Yazarloo, S. Zarrinkamar and H. Hassanabadi. Two-body Spinless Salpeter equation for the Woods-Saxon potential[J]. Chinese Physics C, 2013, 37(8): 083102.  doi: 10.1088/1674-1137/37/8/083102 shu
Milestone
Received: 2012-08-06
Revised: 2012-10-08
Article Metric

Article Views(2101)
PDF Downloads(361)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Two-body Spinless Salpeter equation for the Woods-Saxon potential

Abstract: The two-body Spinless Salpeter equation for the Woods-Saxon potential is solved by using the supersymmetry quantum mechanics (SUSYQM). In our calculations, we have applied an approximation to the centrifugal barrier. Energy eigenvalues and the corresponding eigenfunctions are computed for various values of quantum numbers n, l.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return