Deuteron electromagnetic form factors in transverse plane with a phenomenological Lagrangian approach

  • A phenomenological Lagrangian approach is employed to study the electromagnetic properties of deuteron. The deuteron is regarded as a loosely bound state of a proton and a neutron. The deuteron electromagnetic form factors are expressed in light-front representation in the transverse plane. The transverse charge density of the deuteron is discussed.
      PCAS:
  • 加载中
  • [1] Gilman R A, Gross F. J. Phys. G, 2002, 28: R37[2] Sick I. Prog. Part. Nucl. Phys., 2001, 47: 245[3] Gross F. Eur. Phys. J. A, 2003, 17: 407[4] Garcon M, Van Orden J W. Adv. Nucl. Phys., 2001, 26: 293[5] Arnold R G, Carlson C E, Gross F. Phys. Rev. C, 1980, 21: 1426; Phys. Rev. C, 1981, 23: 363[6] Mathiot J F. Phys. Rept., 1989, 173, 63; Henning H, Adam J J, Sauer P U, Stadler A. Phys. Rev. C, 1995, 52: 471; Adam J J, Arenhovel H. Nucl. Phys. A, 1997, 614: 289[7] Wiringa R B, Stoks V G J, Schiavilla R. Phys. Rev. C, 1995, 51: 38[8] Arenhovel H, Ritz F, Wilbois T. Phys. Rev. C, 2000, 61: 034002[9] Gari M, Hyuga H. Nucl. Phys. A, 1977, 278: 372; Burov V V, Dorkin S M, Dostovalov V N. Z. Phys. A, 1984, 315: 205; Burov V V, Dostovalov V N. Z. Phys. A, 1987, 326: 245; Buchmann A, Yamauchi Y, Faessler A. Nucl. Phys. A, 1989, 496: 621; Valcarce A, Farnandez F, Buchmann A J, Amand Faessler. Phys. Rev. C, 1994, 50: 2246; Ito H, Kisslinger L S. Phys. Rev. C, 1989, 40: 887; Hummel E, Tjon J A. Phys. Rev. Lett., 1989, 63: 1788[10] Karmanov V A, Smirnov A V. Nucl. Phys. A, 1994, 575: 520; Carbonell J, Karmanov V A. Eur. Phys. J. A, 1999, 6: 9; Van Orden J W, Devine N, Gross F. Phys. Rev. Lett., 1995, 75: 4369; Carbonell J, Desplanques B, Karmanov V A, Mathiot J F, Phys. Rept., 1998, 300: 215; Phillips D R, Wallace S J, Devine N K. Phys. Rev. C, 1998, 58: 2261; Allen T W, Klink W H, Polyzou W N. Phys. Rev. C, 2001, 63: 034002; Allen T W, Payne G L, Polyzou W N. Phys. Rev. C, 2000, 62: 054002; Lev F M, Pace E, Salme G. Phys. Rev. C, 2000, 62: 064004; Frankfurt L L, Frederico T, Strikman M. Phys. Rev. C, 1993, 48: 2182[11] Kaplan D B, Savage M J, Wise M B. Phys. Rev. C, 1999, 59: 617; Park T S, Kubodera K, Min D P, Rho M. Phys. Rev. C, 1998, 58: 637; Chen J W, Griesshammer H W, Savage M J, Springer R P. Nucl. Phys. A, 1998, 644: 245; Walzl M, Meissner U G. Phys. Lett. B, 2001, 513: 37; Phillips D R. Phys. Lett. B, 2003, 567: 12; Beane S R, Malheiro M, McGovern J A, Phillips D R, Kolck U. van. Nucl. Phys. A, 2005, 747: 311; Choudhury D, Phillips D R. Phys. Rev. C, 2005, 71: 044002; Hildebrandt R P, Griesshammer H W, Hemmert T R, Phillips D R. Nucl. Phys. A, 2005, 748: 573; Phillips D R. J. Phys. G, 2007, 34: 365[12] Ivanov A N, Troitskaya N I, Faber M, Oberhummer H. Phys. Lett. B, 1995, 361: 74[13] Lacombe M, Loiseau B, Vinh Mau R et al. Phys. Lett. B, 1981, 101: 139; Machleidt R. Phys. Rev. C, 2001, 63: 024001[14] Buck W W, Franz Gross. Phys. Rev. D, 1979, 20: 2361; Gross F, Van Orden J W, Holinde K. Phys. Rev. C, 1992, 45: 2094; Adam J J, Gross F, Jeschonnek S, Ulmer P, Van Orden J W. Phys. Rev. C, 2002, 66: 044003; Gross F, Stadler A. Phys. Rev. C, 2008, 78: 014005; Gross F, Stadler A. Phys. Rev. C, 2010, 82: 034004[15] Carbonell J, Karmanov V A. Nucl. Phys. A, 1994, 581: 625; Karmanov V A. Nucl. Phys. A, 1981, 362: 331[16] Frankfurt L L. Strikman M I. Nucl. Phys. B, 1979, 148: 107; Kondratyuk L A, Strikman M I. Nucl. Phys. A, 1984, 426: 575; Frankfurt L L, Frederico T, Strikman M. Phys. Rev. C, 1992, 48: 2182[17] Soper D E. Phys. Rev. D, 1972, 5: 1956[18] Burkardt M, Mod Int. J. Phys. A, 2003, 18: 173[19] Diehl M. Eur. Phys. J. C, 2002, 25, 223; 2003, 31: 277[20] Carlson C E, Vanderhaeghen M. Phys. Rev. Lett., 2008, 100: 032004[21] Miller G A. Phys. Rev. Lett., 2007, 99: 112001; Miller G A. Phys. Rev. C, 2009, 79: 055204[22] Weinberg S. Phys. Rev. Lett., 1967, 18: 188; Phys. Rev., 1968, 166: 1568[23] Salam A. Nuovo Cim., 1962, 25: 224[24] Hayashi K et al. Fortschr. Phys., 1967, 15: 625[25] Efimov G V, Ivanov M A. The Quark Confinement Model of Hadrons, IOP, Bristol, 1993[26] DONG Yu-Bing, Faessler A, Gutsche T, Lyubovitskij V E. Phys. Rev. D, 2008, 77: 094013; DONG Yu-Bing, Faessler A, Gutsche T, Kovalenko S, Lyubovitskij V E. Phys. Rev. D, 2009, 79: 094013; DONG Yu-Bing, Faessler A, Gutsche T, Lyubovitskij V E. J. Phys. G, 2011, 38: 015001; Phys. Rev. D, 2010, 81: 014006; 074011; DONG Yu-Bing, Faessler A, Gutsche T, Lyubovitskij V E. Phys. Rev. D, 82: 034035; 83: 094005; DONG Yu-Bing, Faessler A, Gutsche T, Lyubovitskij V E. J. Phys. G, 2013, 40: 015002; DONG Yu-Bing, WANG Yi-Zhan. J. Phys. G, 2012, 39: 025003[27] DONG Yu-Bing, Faessler A, Gutsche T, Lyubovitskij V E. Phys. Rev. C, 2008, 78: 035205; DONG Yu-Bing. Phys. Rev. C, 2009, 80: 025208; DONG Yu-Bing, LIANG Cui-Ying. J. Phys. G. 2013, 40: 025001[28] DONG Yu-Bing, WANG S D. Phys. Lett. B, 2010, 684: 123; DONG Yu-Bing. Phys. Rev. C, 2010, 81: 018201[29] Bunden P G, Melnitchouk W, Tjon J A. Phys. Rev. C, 2005, 72: 034612[30] Tomasi-Gustafsson E, Gakh G I, Adamuscin C. Phys. Rev. C, 2006, 73: 045204[31] Miller G A. Phys. Rev. Lett., 2007, 99: 112001; Miller G A. Ann. Rev. Nucl. Part. Sci., 2010, 60: 1[32] Afanasev A, Afanasev V D, Trubnikov S V. Magnetic Radius of the Deuteron, 9808047 [nucl-th][33] El-Bennich B, de Melo J P B C, Frederico T. Few-Body Systems, 2013, 54: 1851[34] Miller G A. Phys. Rev. C, 2009, 80: 045210
  • 加载中

Get Citation
LIANG Cui-Ying, DONG Yu-Bing and LIANG Wei-Hong. Deuteron electromagnetic form factors in transverse plane with a phenomenological Lagrangian approach[J]. Chinese Physics C, 2014, 38(7): 074104. doi: 10.1088/1674-1137/38/7/074104
LIANG Cui-Ying, DONG Yu-Bing and LIANG Wei-Hong. Deuteron electromagnetic form factors in transverse plane with a phenomenological Lagrangian approach[J]. Chinese Physics C, 2014, 38(7): 074104.  doi: 10.1088/1674-1137/38/7/074104 shu
Milestone
Received: 2013-09-24
Revised: 2014-01-02
Article Metric

Article Views(1895)
PDF Downloads(138)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Deuteron electromagnetic form factors in transverse plane with a phenomenological Lagrangian approach

    Corresponding author: LIANG Cui-Ying,
    Corresponding author: DONG Yu-Bing,

Abstract: A phenomenological Lagrangian approach is employed to study the electromagnetic properties of deuteron. The deuteron is regarded as a loosely bound state of a proton and a neutron. The deuteron electromagnetic form factors are expressed in light-front representation in the transverse plane. The transverse charge density of the deuteron is discussed.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return