Large angular scale CMB anisotropy from an excited initial mode

  • According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit l<200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H<< M*< Mp and on the slow-roll parameter ε.
      PCAS:
  • 加载中
  • [1] S. Dodelson, Modern Cosmology (New York:Accademic Press, 2003)
    [2] V. M. Moukhanov, Physical Foundation of Cosmology (New York:Cambridge University Press, 2005)
    [3] S. Weinberg, Cosmology (New York:Cambridge University Press, 2008)
    [4] A. H. Guth, Phys. Rev. D, 23:347(1981)
    [5] D. H. Lyth and A. R. Liddle, The primordial density pertur-bation:cosmology, in ation and the origin of structure (New York:Cambridge University Press, 2009)
    [6] D. Baumann, TASI 2009, arXiv:hep-th/0907.5424v1
    [7] G. Hinshaw, D. Larson, E. Komatsu et al, ApJS, 208:19(2013)
    [8] P. A. R. Ade et al, Astron. Asstrophys. A, 571:22(2014); P. Ade et al[arXiv:1502.02114]
    [9] A. Kempf and J. C. Niemeyer, Phys. Rev. D, 64:103501(2001)
    [10] N. Kaloper et al, Phys. Rev. D, 66:123510(2002)
    [11] U. H. Danielsson, Phys. Rev. D, 66:023511(2002)
    [12] J. Martin and R. H. Brandenberger, Phys. Rev. D, 68:063513(2003)
    [13] A. Ashoorioon et al, JCAP, 02:025(2014)
    [14] R. Holman and A. J. Tolley, JCAP, 05:001(2008)
    [15] S. Kundu, JCAP, 02:005(2012)
    [16] S. Kundu, arXiv:1311.1575v1
    [17] T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A, 360:117(1978)
    [18] Y. Cai, Y. Wang, and Y. Piao, Phys. Rev D, 92:023518(2015)
    [19] Y. Cai, T. Qiu, J. Xia, and X. Zhang, Phys. Rev. D, 79:021303(2009)
    [20] Y. Cai, D. A. Easson, and R. Brandenberger, JCAP, 08:020(2012)
    [21] J. Xia, Y. Cai, H. Li, and X. Zhang, Phys. Rev. Lett., 112:251301(2014)
    [22] Y. Cai, SCIENCE CHINA, Physics, Mechanics and Astronomy, 57:1414(2014)
    [23] Y. Piao, B. Feng, and X. Zhang, Phys. Rev. D, 69:103520(2004)
    [24] Z. Liu, Z. Guo, and Y. Piao, Eur. Phys. J. C, 74:3006(2014)
    [25] Z. Liu, Z. Guo, and Y. Piao, Phys. Rev. D, 88:063539(2013)
    [26] Y. Wang and Y. Piao, arXiv:gr-qc/1409.7153v3
    [27] R. H. Brandenberger, arXiv:hep-ph/9910410
    [28] J. Martin and R. H. Brandenberger, Phys. Rev. D, 63:123501(2001)
    [29] Y. Cai and Y. Wang, Phys. Let. B, 735:108111(2014)
    [30] Y. Cai, F. Chen, E. G. M. Ferreira, and J. Quintin, arXiv:1412.4298[hep-th]
    [31] Y. Cai, E. G. M. Ferreira, B. Hu, and J. Quintin, Phys. Rev. D, 92:121303(2015)
    [32] E. Yusofiand M. Mohsenzadeh, Phys. Let. B, 735:261265(2014)
    [33] M. Mohsenzadeh, M. R. Tanhayi, and E. Yusofi, Eur. Phys. J. C, 74:2920(2014)
    [34] E. Yusofiand M. Mohsenzadeh, Mod. Phys. Lett. A, 30:1550041(2015)
    [35] M. Mohsenzadeh, E. Yusofi, and M. R. Tanhayi, Canadian Journal of Physics, 93:14661469(2015)
    [36] E. Yusofiand M. Mohsenzadeh, JHEP, 09:020(2014)
    [37] C. Caroll, SPACE TIME AND GEOMETRY An introduction to general relativity (Sanfrancisco:Addition Wesley, 2003)
    [38] N. D. Birrel, P.C.W. Davies, Quantum Field in Curved Space-time (Cambridge, Cambridge University Press, 1982)
    [39] L Bergstrom U. H. Danielsson, JHEP, 0212:038(2002)
    [40] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,Series and Products (Elsevier Accademic Press, 2007)
    [41] P. A. R. Ade et al, arxiv:astro-ph/1303.5083
    [42] Y. Cai, W. Zhao, and Y. Zhang, Phys. Rev. D, 89:023005(2014)
  • 加载中

Get Citation
A. Sojasi, M. Mohsenzadeh and E. Yusofi. Large angular scale CMB anisotropy from an excited initial mode[J]. Chinese Physics C, 2016, 40(7): 075101. doi: 10.1088/1674-1137/40/7/075101
A. Sojasi, M. Mohsenzadeh and E. Yusofi. Large angular scale CMB anisotropy from an excited initial mode[J]. Chinese Physics C, 2016, 40(7): 075101.  doi: 10.1088/1674-1137/40/7/075101 shu
Milestone
Received: 2015-12-22
Revised: 2015-03-01
Fund

    Supported by the Islamic Azad University, Rasht Branch, Rasht, Iran

Article Metric

Article Views(1778)
PDF Downloads(267)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Large angular scale CMB anisotropy from an excited initial mode

    Corresponding author: A. Sojasi,
    Corresponding author: M. Mohsenzadeh,
    Corresponding author: E. Yusofi,
Fund Project:  Supported by the Islamic Azad University, Rasht Branch, Rasht, Iran

Abstract: According to inflationary cosmology, the CMB anisotropy gives an opportunity to test predictions of new physics hypotheses. The initial state of quantum fluctuations is one of the important options at high energy scale, as it can affect observables such as the CMB power spectrum. In this study a quasi-de Sitter inflationary background with approximate de Sitter mode function built over the Bunch-Davies mode is applied to investigate the scale-dependency of the CMB anisotropy. The recent Planck constraint on spectral index motivated us to examine the effect of a new excited mode function (instead of pure de Sitter mode) on the CMB anisotropy at large angular scales. In so doing, it is found that the angular scale-invariance in the CMB temperature fluctuations is broken and in the limit l<200 a tiny deviation appears. Also, it is shown that the power spectrum of CMB anisotropy is dependent on a free parameter with mass dimension H<< M*< Mp and on the slow-roll parameter ε.

    HTML

Reference (42)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return