Simulation of the fission dynamics of the excited compound nuclei 206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm

  • A two-dimensional dynamical model based on the Langevin equation was used to study the fission dynamics of the compound nuclei 206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm, respectively. The fission cross section and average pre-scission neutron multiplicity were calculated for the compound nuclei206Po and 168Yb, and results of the calculations compared with the experimental data. The elongation coordinate was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K, considered as the second dimension in the Langevin dynamical calculations. In the two-dimensional calculations, a constant dissipation coefficient of K and a non-constant dissipation coefficient have been used to reproduce the above-mentioned experimental data. It is shown that the two-dimensional Langevin equation can satisfactorily reproduce the fission cross section and average pre-scission neutron multiplicity for the compound nuclei 206Po and 168Yb by using constant values of the dissipation coefficient of K equal to γK=0.18(MeV zs)-1/2 and γK=0.20(MeV zs)-1/2 for the compound nuclei 206Po and 168Yb, respectively.
      PCAS:
  • 加载中
  • [1] E. G. Ryabov, A. V. Karpov, P. N. Nadtochy and G. D. Adeev, Phys. Rev. C, 78:044614 (2008)
    [2] P. N. Nadtochy, E. G. Ryabov, A. E. Gegechkori, Yu. A. Anischenko and G. D. Adeev, Phys. Rev. C, 89:014616 (2014)
    [3] H. Eslamizadeh, J. Phys. G:Nucl. Part. Phys., 40:095102 (2013)
    [4] N. Vonta, G. A. Souliotis, M. Veselsky and A. Bonaser. Phys. Rev. C, 92:024616 (2015)
    [5] I. I. Gontchar et al, Phys. At. Nucl., 63:1688 (2000)
    [6] H. Eslamizadeh, Chinese Phys. C, 39:054102 (2015)
    [7] I. I. Gontchar, P. Frbrich and N. I. Pischasov, Phys. Rev. C, 47:2228 (1993)
    [8] H. Eslamizadeh, Pramana J. Phys., 80:621 (2013)
    [9] A. V. Karpov, R. M. Hiryanov, A. V. Sagdeev, G. D. Adeev, J. Phys. G:Nucl. Part. Phys., 34:255 (2007)
    [10] J. P. Lestone and S. G. McCalla, Phys. Rev. C, 79:044611 (2009)
    [11] H. Eslamizadeh and M. Soltani, Ann. Nucl. Energy, 80:261 (2015)
    [12] M. V. Borunov, P. N. Nadtochy, G. D. Adeev, Nucl. Phys. A, 799:56 (2008)
    [13] J. P. Lestone et al, Nucl. Phys. A, 559:277 (1993)
    [14] H. Eslamizadeh, Pramana J. Phys., 78:231 (2012)
    [15] H. Eslamizadeh, Int. J. Mod. Phys. E, 21:1250008 (2012)
    [16] W. Ye, N. Wang and J. Tian, Phys. Rev. C, 90:041604 (2014)
    [17] Yu. A. Anischenko, A. E. Gegechkori and G. D. Adeev, Yad. Fiz., 74:361 (2011)
    [18] W. Ye and J. Tian, Phys. Rev. C, 93:044603 (2016)
    [19] H. Eslamizadeh and H. Raanaei, Ann. Nucl. Energy, 51:252 (2013)
    [20] H. Eslamizadeh, Chinese Phys. C, 34:1714 (2010)
    [21] J. Tian, N. Wang and W. Ye, Chinese Phys. C, 39:034102 (2015)
    [22] W. Ye, J. Tian, Phys. Rev. C, 91:064603 (2015)
    [23] J. P. Lestone, Phys. Rev. C, 59:1540 (1999)
    [24] M. Brack et al, Rev. Mod. Phys., 44:320 (1972)
    [25] T. Wada, Y. Abe and N. Carjan, Phys. Rev. Lett., 70:3538 (1993)
    [26] P. Frbrich, Nucl. Phys. A, 787:170 (2007)
    [27] A. V. Ignatyuk et al, Yad. Fiz., 21:1185 (1975)
    [28] H. J. Krappe, J. R. Nix and J. Sierk, Phys. Rev. C, 20:992 (1979)
    [29] A. J. Sierk, Phys. Rev. C, 33:2039 (1986)
    [30] W. D. Myers and W. J. Swiatecki, Nucl. Phys., 81:1 (1966)
    [31] W. D. Myers and W. J. Swiatecki, Ark. Fys., 36:343 (1967)
    [32] G. Chaudhuri and S. Pal, Phys. Rev. C, 63:064603 (2001)
    [33] S. Pal and T. Mukhopadhyay, Phys. Rev. C, 57:210 (1998)
    [34] J. Blocki, F. Brut, T. Srokowski and W. J. Swiatecki, Nucl. Phys. A, 545:511 (1992)
    [35] P. Frbrich and I. I. Gontchar, Phys. Rep., 292:131 (1998)
    [36] S. G. McCalla and J. P. Lestone, Phys. Rev. Lett., 101:032702 (2008)
    [37] T. Dssing and J. Randrup, Nucl. Phys. A, 433:215 (1985)
    [38] J. Randrup, Nucl. Phys. A, 383:468 (1982)
    [39] K. T. R. Davies, J. R. Nix, Phys. Rev. C, 14:1977 (1976)
    [40] M. Blann, Phys. Rev. C, 21:1770 (1980)
    [41] J. E. Lynn, The theory of neutron resonance reactions (Clarendon:Oxford, 1968) p. 325
    [42] R. J. Charity et al, Nucl. Phys. A, 457:441 (1986)
    [43] D. Mancusi, R. J. Charity, and J. Cugnon, Phys. Rev. C, 82:044610 (2010)
    [44] J. van der Plicht et al, Phys. Rev. C, 28:2022 (1983)
    [45] D. J. Hinde et al, Nucl. Phys. A, 452:550 (1986)
    [46] K. S. Golda et al, Nucl. Phys. A, 913:157 (2013)
  • 加载中

Get Citation
H. Eslamizadeh and F. Bagheri. Simulation of the fission dynamics of the excited compound nuclei 206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm[J]. Chinese Physics C, 2017, 41(4): 044101. doi: 10.1088/1674-1137/41/4/044101
H. Eslamizadeh and F. Bagheri. Simulation of the fission dynamics of the excited compound nuclei 206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm[J]. Chinese Physics C, 2017, 41(4): 044101.  doi: 10.1088/1674-1137/41/4/044101 shu
Milestone
Received: 2016-07-16
Article Metric

Article Views(74)
PDF Downloads(24)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Simulation of the fission dynamics of the excited compound nuclei 206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm

    Corresponding author: H. Eslamizadeh, m_eslamizadeh@yahoo.com
  • 1. Department of Physics, Persian Gulf University 7516913817, Bushehr, Iran

Abstract: A two-dimensional dynamical model based on the Langevin equation was used to study the fission dynamics of the compound nuclei 206Po and 168Yb produced in the reactions 12C+194Pt and 18O+150Sm, respectively. The fission cross section and average pre-scission neutron multiplicity were calculated for the compound nuclei206Po and 168Yb, and results of the calculations compared with the experimental data. The elongation coordinate was used as the first dimension and the projection of the total spin of the compound nucleus onto the symmetry axis, K, considered as the second dimension in the Langevin dynamical calculations. In the two-dimensional calculations, a constant dissipation coefficient of K and a non-constant dissipation coefficient have been used to reproduce the above-mentioned experimental data. It is shown that the two-dimensional Langevin equation can satisfactorily reproduce the fission cross section and average pre-scission neutron multiplicity for the compound nuclei 206Po and 168Yb by using constant values of the dissipation coefficient of K equal to γK=0.18(MeV zs)-1/2 and γK=0.20(MeV zs)-1/2 for the compound nuclei 206Po and 168Yb, respectively.

    HTML

Reference (46)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return