Chiral crossover transition in a finite volume

  • Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature Tc of the crossover, showing a significant decrease in Tc as L decreases below 3 fm.
      PCAS:
  • 加载中
  • [1] J. Adams et al (STAR Collaboration), Nucl. Phys. A, 757:102 (2005)
    [2] E. Shuryak, Prog. Part. Nucl. Phys., 62:48 (2009)
    [3] E. Shuryak, Prog. Part. Nucl. Phys., 53:273 (2004)
    [4] W. A. Zajc, Nucl. Phys. A, 805:283 (2008)
    [5] E. Bilgici, F. Bruckmann, C. Gattringer, and C. Hagen, Phys. Rev. D, 77:094007 (2008)
    [6] C. S. Fischer, Phys. Rev. Lett., 103:052003 (2009)
    [7] G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, JHEP, 1104:001 (2011)
    [8] M. Asakawa and K. Yazaki, Nucl. Phys. A, 504:668 (1989)
    [9] A. Bazavov et al (HotQCD Collaboration), Phys. Rev. D, 90:094503 (2014)
    [10] C. Shi, Y. L. Wang, Y. Jiang, Z. F. Cui, and H. S. Zong, JHEP, 1407:014 (2014)
    [11] S. A. Bass et al, Prog. Part. Nucl. Phys., 41:255 (1998)
    [12] G. Graef, M. Bleicher, and Q. Li, Phys. Rev. C, 85:044901 (2012)
    [13] L. F. Palhares, E. S. Fraga, and T. Kodama, J. Phys. G, 38:085101 (2011)
    [14] J. Gasser and H. Leutwyler, Phys. Lett. B, 188:477 (1987)
    [15] F. C. Hansen, Nucl. Phys. B, 345:685 (1990).
    [16] P. H. Damgaard and H. Fukaya, JHEP, 0901:052 (2009)
    [17] J. Braun, B. Klein, and B. J. Schaefer, Phys. Lett. B, 713:216 (2012)
    [18] J. Braun, B. Klein, H.-J. Pirner, and A. H. Rezaeian, Phys. Rev. D, 73:074010 (2006)
    [19] A. Bhattacharyya, R. Ray, and S. Sur, Phys. Rev. D, 91(5):051501 (2015)
    [20] A. Bhattacharyya, P. Deb, S. K. Ghosh, R. Ray, and S. Sur, Phys. Rev. D, 87(5):054009 (2013)
    [21] Z. Pan, Z. F. Cui, C. H. Chang, and H. S. Zong, Int. J. Mod. Phys. A, 32(13):1750067 (2017)
    [22] C. D. Roberts, Prog. Part. Nucl. Phys., 61:50 (2008)
    [23] C. S. Fischer and J. Luecker, Phys. Lett. B, 718:1036 (2013)
    [24] C. Shi, Y. L. Du, S. S. Xu, X. J. Liu, and H. S. Zong, Phys. Rev. D, 93(3):036006 (2016)
    [25] J. Luecker, C. S. Fischer, and R. Williams, Phys. Rev. D, 81:094005 (2010)
    [26] B. Klein, Phys. Rept., 09:002 (2017)
    [27] C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys., 45:S1 (2000)
    [28] P. Maris and P. C. Tandy, Phys. Rev. C, 60:055214 (1999)
    [29] A. Bazavov et al.:Phys. Rev. D 85:054503 (2012)
    [30] H.-T. Ding, A. Bazavov, F. Karsch, Y. Maezawa, S. Mukherjee, and P. Petreczky, PoS LATTICE, 2013:157 (2014)
    [31] A. Bazavov, H.-T. Ding, P. Hegde, F. Karsch, E. Laermann, S. Mukherjee, P. Petreczky, and C. Schmidt, Phys. Rev. D, 95(7):074505 (2017)
  • 加载中

Get Citation
Chao Shi, Wenbao Jia, An Sun, Liping Zhang and Hongshi Zong. Chiral crossover transition in a finite volume[J]. Chinese Physics C, 2018, 42(2): 023101. doi: 10.1088/1674-1137/42/2/023101
Chao Shi, Wenbao Jia, An Sun, Liping Zhang and Hongshi Zong. Chiral crossover transition in a finite volume[J]. Chinese Physics C, 2018, 42(2): 023101.  doi: 10.1088/1674-1137/42/2/023101 shu
Milestone
Received: 2017-11-09
Fund

    Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment Technology in Huazhong University of Science Technology (DMETKF2015015)

Article Metric

Article Views(758)
PDF Downloads(11)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Chiral crossover transition in a finite volume

    Corresponding author: Chao Shi,
    Corresponding author: Wenbao Jia,
    Corresponding author: Hongshi Zong,
  • 1.  College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 2.  College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • 3.  Key laboratory of road construction &
  • 4. College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
  • 5. Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing 100190, China
  • 6. Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093, China
Fund Project:  Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment Technology in Huazhong University of Science Technology (DMETKF2015015)

Abstract: Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature Tc of the crossover, showing a significant decrease in Tc as L decreases below 3 fm.

    HTML

Reference (31)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return