Measurement of the 2H(7Be, 6Li) 3He reaction rate and its contribution to the primordial lithium abundance

  • In the standard Big Bang nucleosynthesis (SBBN) model, the lithium puzzle has attracted intense interest over the past few decades, but still has not been solved. Conventionally, the approach is to include more reactions flowing into or out of lithium, and study the potential effects of those reactions which were not previously considered. 7Be(d, 3He)6Li is a reaction that not only produces 6Li but also destroys 7Be, which decays to 7Li, thereby affecting 7Li indirectly. Therefore, this reaction could alleviate the lithium discrepancy if its reaction rate is sufficiently high. However, there is not much information available about the 7Be(d, 3He)6Li reaction rate. In this work, the angular distributions of the 7Be(d, 3He)6Li reaction are measured at the center of mass energies Ecm=4.0 MeV and 6.7 MeV with secondary 7Be beams for the first time. The excitation function of the 7Be(d, 3He)6Li reaction is first calculated with the computer code TALYS and then normalized to the experimental data, then its reaction rate is deduced. A SBBN network calculation is performed to investigate its influence on the 6Li and 7Li abundances. The results show that the 7Be(d, 3He)6Li reaction has a minimal effect on 6Li and 7Li because of its small reaction rate. Therefore, the 7Be(d, 3He)6Li reaction is ruled out by this experiment as a means of alleviating the lithium discrepancy.
      PCAS:
  • 加载中
  • [1] F. Spite and M. Spite, Astron. Astrophys., 115:357 (1982)
    [2] L. M. Hobbs and D. K. Duncan, Astrophys. J, 319:796 (1987)
    [3] A. M. Boesgaard, A. Stephens, and C. P. Deliyannis, Astrophys. J, 633:398 (2005)
    [4] C. Charbonnel and F. Primas, Astron. Astrophys., 442:961 (2005)
    [5] P. Bonifacio, P. Molaro, T. Sivarani et al, Astron. Astrophys., 462:851 (2007)
    [6] J. I. Gonzlez Hernndez, P. Bonifacio, H. -G. Ludwig et al, Astron. Astrophys., 480:233 (2008)
    [7] W. Aoki, P. S. Barklem, T. C. Beers et al, Astrophys. J, 698:1803 (2009)
    [8] A. Hosford, S. G. Ryan, A. E. Garca Prez et al, Astron. Astrophys., 493:601 (2009)
    [9] M. Asplund, D. L. Lambert, P. E. Nissen et al, Astrophys. J, 644:229 (2006)
    [10] V. V. Smith, D. L. Lambert, P. E. Nissen, Astrophys. J, 408:262 (1993)
    [11] R. Cayrel, M. Spite, F. Spite et al, Astro. Astrophys., 343:923 (1999)
    [12] P. E. Nissen, D. L. Lambert, F. Primas et al, Astron. Astrophys., 348:211 (1999)
    [13] A. E. Garca Prez, W. Aoki, S. Inoue et al, Astron. Astrophys., 504:213 (2009)
    [14] G. Hinshaw, D. Larson, E. Komatsu et al, Astrophys. J, 208:19 (S) (2013)
    [15] R. H. Cyburt, B. D. Fields, K. A. Olive et al, Cosm. Astro. Phys. J, 11:12 (S) (2008)
    [16] J. Dunkley, E. Komatsu, M. R. Nolta et al, Astrophys. J, 180:306 (S) (2009)
    [17] F. Iocco, G. Mangano, G. Miele et al, Phys. Rep., 472:1 (2009)
    [18] E. Vangioni-Flam, K. A. Olive, B. D. Fields et al, Astrophys. J, 585:611 (2003)
    [19] F. Spite, M. Spite, Proc. IAU Symposium eds. C. Charbonnel, M. Tosi, F. Primas, C. Chiappini, No. 268 (2010)
    [20] M. A. Famiano, A. B. Balantekin and T. Kajino, Phys. Rev. C, 93:045804 (2016)
    [21] R. H. Cyburt, B. D. Fields, K. A. Olive et al, Rev. Mod. Phys., 88:015004 (2016)
    [22] S. Q. Hou, J, J, He, A. Parikh et al, Astrophys. J, 2:834 (2017)
    [23] A. Coc, E. Vangioni-Flam and P. Descouvemont, Astrophys. J, 600:544 (2004)
    [24] C. Angulo, E. Casarejos, M. Couder et al, Astrophys. J, 630:105 (L) (2005)
    [25] R. H. Cyburt and M. Pospelov, Mod. Phys. E, 21:1250004 (2012)
    [26] A.J, Koning, S. Hilaire and M.C. Duijvestijn, TALYS-1.0, Proc. of the Int. Conf. on Nuclear Data for Science and Technology-ND2007, April 22-27 (2007) Nice, France, eds. O. Bersillon, F. Gunsing, E. Bauge, R. Jacqmin and S. Leray, EDP Sciences, p. 211-214 (2008)
    [27] W. P. Liu, Z. H. Li, X. X. Bai et al, Nucl. Instrum. Methods B, 204:62 (2003)
    [28] Z. H. Li, B. Guo, S. Q. Yan et al, Phys. Rev. C, 74:035801 (2006)
    [29] E. T. Li, Z. H. Li, Y. J, Li et al, Phys. Rev. C, 90:067601 (2014)
    [30] E. T. Li, B. Guo, Z. H. Li et al, Chin. Phys. C, 40:21 (2016)
    [31] M. Igarashi et al, Computer Program TWOFNR (Surrey University version)
    [32] I. Brida, S. C. Pieper and R. B. Wiringa, Phys. Rev. C, 84:024319 (2011)
    [33] S. Goriely, S. Hilaire and A. J. Koning, Astron. Astrophys., 487:767 (2008)
    [34] F.-K. Thielemann, M. Arnould and J, Truran, in Advances in Nuclear Astrophysics, edited by A. Vangioni-Flam (Editions Frontire, Gif-sur-Yvette, France, 1987), p. 525
    [35] C. M. Perey and F. G. Perey, Atomic Data and Nuclear Data Tables, 17:1 (1976)
    [36] G. Audi, F.G. Kondev, M. Wang et al, Chin. Phys. C, 41:030001 (2017)
    [37] R. V. Wagoner, Astrophys. J, 162:247 (S) (1969)
    [38] M. Anders, D. Trezzi, R. Menegazzo et al, Phys. Rev. Lett., 113:042501 (2014)
    [39] P. Descouvemont, A. Adahchour, C. Angulo et al, Atomic Data and Nuclear Data Tables, 88:203 (2004)
    [40] J. Su, Z. H. Li, B. Guo et al, Chin. Phys. Lett., 27:052101 (2010)
    [41] G. R. Caughlan and W. A. Fowler, Atomic Data and Nuclear Data Tables, 40:283 (1988)
    [42] J. J. He, S. Z. Chen, C. E. Rolfs et al, Phys. Lett. B, 725:287 (2013)
    [43] Y. Xu, K. Takahashi and S. Goriely, Nucl. Phys. A, 918:61 (2013)
    [44] D. Thomas, D. N. Schramm, K. A. Olive and B. D. Fields, Astrophys. J, 406:569 (1993)
    [45] P. D. O'Malley, D. W. Bardayan, A. S. Adekola et al, Phys. Rev. C, 84:042801 (R) (2011)
  • 加载中

Get Citation
Er-Tao Li, Zhi-Hong Li, Sheng-Quan Yan, Jun Su, Bing Guo, Yun-Ju Li, You-Bao Wang, Gang Lian, Sheng Zeng, Si-Zhe Chen, Shao-Bo Ma, Xiang-Qing Li, Cao He, Hui-Bin Sun and Wei-Ping Liu. Measurement of the 2H(7Be, 6Li) 3He reaction rate and its contribution to the primordial lithium abundance[J]. Chinese Physics C, 2018, 42(4): 044001. doi: 10.1088/1674-1137/42/4/044001
Er-Tao Li, Zhi-Hong Li, Sheng-Quan Yan, Jun Su, Bing Guo, Yun-Ju Li, You-Bao Wang, Gang Lian, Sheng Zeng, Si-Zhe Chen, Shao-Bo Ma, Xiang-Qing Li, Cao He, Hui-Bin Sun and Wei-Ping Liu. Measurement of the 2H(7Be, 6Li) 3He reaction rate and its contribution to the primordial lithium abundance[J]. Chinese Physics C, 2018, 42(4): 044001.  doi: 10.1088/1674-1137/42/4/044001 shu
Milestone
Received: 2017-11-14
Revised: 2018-01-13
Fund

    Supported by National Natural Science Foundation of China (11375269, 11505117, 11490560, 11475264, 11321064), Natural Science Foundation of Guangdong Province (2015A030310012), 973 program of China (2013CB834406) and National key Research and Development Province (2016YFA0400502)

Article Metric

Article Views(872)
PDF Downloads(30)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Measurement of the 2H(7Be, 6Li) 3He reaction rate and its contribution to the primordial lithium abundance

    Corresponding author: Er-Tao Li,
    Corresponding author: Zhi-Hong Li,
  • 1. China Institute of Atomic Energy, Beijing 102413, China
  • 2. College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
  • 3.  China Institute of Atomic Energy, Beijing 102413, China
  • 4.  Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
  • 5.  School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
Fund Project:  Supported by National Natural Science Foundation of China (11375269, 11505117, 11490560, 11475264, 11321064), Natural Science Foundation of Guangdong Province (2015A030310012), 973 program of China (2013CB834406) and National key Research and Development Province (2016YFA0400502)

Abstract: In the standard Big Bang nucleosynthesis (SBBN) model, the lithium puzzle has attracted intense interest over the past few decades, but still has not been solved. Conventionally, the approach is to include more reactions flowing into or out of lithium, and study the potential effects of those reactions which were not previously considered. 7Be(d, 3He)6Li is a reaction that not only produces 6Li but also destroys 7Be, which decays to 7Li, thereby affecting 7Li indirectly. Therefore, this reaction could alleviate the lithium discrepancy if its reaction rate is sufficiently high. However, there is not much information available about the 7Be(d, 3He)6Li reaction rate. In this work, the angular distributions of the 7Be(d, 3He)6Li reaction are measured at the center of mass energies Ecm=4.0 MeV and 6.7 MeV with secondary 7Be beams for the first time. The excitation function of the 7Be(d, 3He)6Li reaction is first calculated with the computer code TALYS and then normalized to the experimental data, then its reaction rate is deduced. A SBBN network calculation is performed to investigate its influence on the 6Li and 7Li abundances. The results show that the 7Be(d, 3He)6Li reaction has a minimal effect on 6Li and 7Li because of its small reaction rate. Therefore, the 7Be(d, 3He)6Li reaction is ruled out by this experiment as a means of alleviating the lithium discrepancy.

    HTML

Reference (45)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return