-
As discussed in Ref. [29], the new sum rule formula for the ξ-moments is based on the fact that the sum rule of the zeroth moment cannot be normalized in entire Borel parameter region. Therefore, our discussion begins with the sum rule formulae for the ξ-moments of the D-meson twist-2 DA
$ \phi_{2;D}(x,\mu) $ obtained in Ref. [18] and the twist-3 DAs$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ obtained in Ref. [19].By giving up the priori setting for zeroth ξ-moment normalization, Eq. (28) in Ref. [18] can be modified as
$ \begin{aligned}[b]&\left<\xi^n\right>_{2;D}\left<\xi^0\right>_{2;D} \\=& \frac{M^2 {\rm e}^{m_D^2/M^2}}{f_D^2} \left\{ \frac{1}{\pi} \frac{1}{M^2} \int^{s_D}_{m_c^2} {\rm d} s {\rm e}^{-s/M^2} {\rm Im} I_{\rm pert}(s) \right. \\&+ \hat{L}_M I_{\left<\bar{q}q\right>}(-q^2) + \hat{L}_M I_{\left<G^2\right>}(-q^2) + \hat{L}_M I_{\left<\bar{q}Gq\right>}(-q^2) \\&+ \left. \hat{L}_M I_{\left<\bar{q}q\right>^2}(-q^2) + \hat{L}_M I_{\left<G^3\right>}(-q^2) \right\}, \end{aligned} $
(1) for the nth ξ-moment
$ \left<\xi^n\right>_{2;D} $ of$ \phi_{2;D}(x,\mu) $ . Eq. (27) in Ref. [19] should be modified as$ \begin{aligned}[b]&\left<\xi^n_p\right>_{3;D}\left<\xi^0_p\right>_{3;D} \\=& \frac{M^2 {\rm e}^{m_D^2/M^2}}{(\mu_D^p)^2 f_D^2} \left\{ \frac{1}{\pi} \frac{1}{M^2} \int^{s_D}_{m_c^2} {\rm d} s {\rm e}^{-s/M^2} {\rm Im} I^p_{\rm pert}(s) \right. \\&+ \hat{L}_M I^p_{\left<\bar{q}q\right>}(-q^2) + \hat{L}_M I^p_{\left<G^2\right>}(-q^2) + \hat{L}_M I^p_{\left<\bar{q}Gq\right>}(-q^2) \\&+ \left. \hat{L}_M I^p_{\left<\bar{q}q\right>^2}(-q^2) + \hat{L}_M I^p_{\left<G^3\right>}(-q^2) \right\}, \end{aligned} $
(2) for the nth ξ-moment
$ \left<\xi^n_p\right>_{3;D} $ of$ \phi_{3;D}^p(x,\mu) $ . Eq. (28) in Ref. [19] should be modified as$ \begin{aligned}[b]&\left<\xi^n_\sigma\right>_{3;D}\left<\xi^0_p\right>_{3;D} \\=& \frac{3M^2 {\rm e}^{m_D^2/M^2}}{(n+1)\mu_D^p \mu_D^\sigma f_D^2} \frac{m_D^2}{m_D^2-m_c^2} \\&\times \left\{ \frac{1}{\pi} \frac{1}{M^2} \int^{s_D}_{m_c^2} {\rm d} s {\rm e}^{-s/M^2} {\rm Im} I^\sigma_{\rm pert}(s) + \hat{L}_M I^\sigma_{\left<\bar{q}q\right>}(-q^2) \right. \\&+ \hat{L}_M I^\sigma_{\left<G^2\right>}(-q^2) + \hat{L}_M I^\sigma_{\left<\bar{q}Gq\right>}(-q^2) + \hat{L}_M I^\sigma_{\left<\bar{q}q\right>^2}(-q^2) \\&+ \left. \hat{L}_M I^\sigma_{\left<G^3\right>}(-q^2) \right\}, \end{aligned} $
(3) for the nth ξ-moment
$ \left<\xi^n_\sigma\right>_{3;D} $ of$ \phi_{3;D}^\sigma(x,\mu) $ . In Eqs. (1), (2), and (3),$ m_D $ represents the D-meson mass,$ m_c $ represents the current charm-quark mass,$ f_D $ is the decay constant of the D-meson,$ s_D $ represents the continuum threshold, and$ \hat{L}_M $ denotes the Borel transformation operator with the Borel parameter M.$ \mu_D^p $ and$ \mu_D^\sigma $ are the normalization constants of DAs$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ respectively. Usually,$ \mu_D^p = \mu_D^\sigma = \mu_D = m_D^2/m_c $ in the literature, in accordance with the equations of motion of on-shell quarks in the meson. However, as discussed in Refs. [39, 40], the quarks inside the bound state are not exactly on-shell. Thus,$ \mu_D^p $ and$ \mu_D^\sigma $ are taken as undetermined parameters in this study and are determined via the sum rules of the zeroth ξ-moments of DAs$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ following the idea of Refs. [19, 39, 40]. In addition, in sum rules (1), (2), and (3), the subscript "pert" indicates the terms coming from the contribution of perturbative part in operator product expansion, and the subscripts$ \left<\bar{q}q\right> $ ,$ \left<G^2\right> $ ,$ \left<\bar{q}Gq\right> $ ,$ \left<\bar{q}q\right>^2 $ , and$ \left<G^3\right> $ indicate the terms proportional to the double-quark condensate, double-gluon condensate, quark-gluon mixing condensate, four-quark condensate, and triple-gluon condensate, respectively. For the expressions of these terms in Eqs. (1), (2) and (3), one can refer to the appendices in Refs. [18, 19]. By setting$ n = 0 $ in Eqs. (1) and (2), one can obtain the sum rules for the zeroth ξ-moments$ \left<\xi^0\right>_{2;D} $ and$ \left<\xi^0_p\right>_{3;D} $ . As the functions of the Borel parameter, the zeroth ξ-moments$ \left<\xi^0\right>_{2;D} $ in Eq. (1) and$ \left<\xi^0_p\right>_{3;D} $ in Eqs. (2) and (3) obviously cannot be normalized in entire$ M^2 $ region. Therefore, more reasonable and accurate sum rules are$\left<\xi^n\right>_{2;D} = \frac{\left<\xi^n\right>_{2;D}\left<\xi^0\right>_{2;D} \big|_{\rm From\ Eq.\; (1)}}{\sqrt{\left<\xi^0\right>^2_{2;D}} \big|_{\rm By\ taking\ {\it n}=0\ in\ Eq.\; (1)}}, $
(4) $ \left<\xi^n_p\right>_{3;D} = \frac{\left<\xi^n_p\right>_{3;D}\left<\xi^0_p\right>_{3;D} \big|_{\rm From\ Eq.\; (2)}}{\sqrt{\left<\xi^0_p\right>^2_{3;D}} \big|_{\rm By\ taking\ {\it n}=0\ in\ Eq.\; (2)}}, $
(5) and
$ \left<\xi^n_\sigma\right>_{3;D} = \frac{\left<\xi^n_\sigma\right>_{3;D}\left<\xi^0_p\right>_{3;D} \big|_{\rm From\ Eq.\; (3)}}{\sqrt{\left<\xi^0_p\right>^2_{3;D}} \big|_{\rm By\ taking\ {\it n}=0\ in\ Eq.\; (2)}}, $
(6) for
$ \left<\xi^n\right>_{2;D} $ ,$ \left<\xi^n_p\right>_{3;D} $ , and$ \left<\xi^n_\sigma\right>_{3;D} $ , respectively. -
In Refs. [18, 19], we suggested LCHO models for D-meson twist-2, 3 DAs. In this subsection, we briefly review these models and then improve them by reconstructing their longitudinal distribution functions.
The D-meson leading-twist DA
$ \phi_{2;D}(x,\mu) $ can be obtained by integrating out the transverse momentum$ {k}_\perp $ component in its WF$ \Psi_{2;D}(x, {k}_\perp) $ , i.e.,$\phi_{2;D}(x,\mu_0) = \frac{2\sqrt{6}}{f_D} \int_{\left| {k}_\perp\right|^2 \leq \mu_0^2} \frac{{\rm d}^2 {k}_\perp}{16\pi^3} \Psi_{2;D}(x, {k}_\perp).$
(7) According to the BHL description [27], the LCHO model for the D-meson leading-twist WF consists of the spin-space WF
$ \chi_{2;D}(x, {k}_\perp) $ and spatial WF$ \psi_{2;D}^R(x, {k}_\perp) $ , i.e.,$ \Psi_{2;D}(x, {k}_\perp) = \chi_{2;D}(x, {k}_\perp) \psi_{2;D}^R(x, {k}_\perp) $ . The spin-space WF is$ \chi_{2;D}(x, {k}_\perp) = \widetilde{m}/\sqrt{ {k}_\perp^2 + \widetilde{m}} $ . Here,$ \widetilde{m} = \hat{m}_c x + \hat{m}_q \bar{x} $ with the constituent charm-quark mass$ \hat{m}_c $ and light-quark mass$ \hat{m}_q $ . In this study, we set$\hat{m}_c = 1.5 ~{\rm GeV}$ and$\hat{m}_q = 0.25 ~{\rm GeV}$ [35]. As discussed in Ref. [18], we set$ \chi_{2;D} \to 1 $ approximately because$ \hat{m}_c \gg \Lambda_{\rm QCD} $ . Then, the D-meson leading-twist WF is expressed as$ \begin{aligned}[b] \Psi_{2;D}(x, {k}_\perp) =& A_{2;D} \varphi_{2;D}(x) \\ & \times \exp \left[ -\frac{1}{\beta_{2;D}^2} \left( \frac{ {k}_\perp^2 + \hat{m}_c^2}{\bar{x}} + \frac{ {k}_\perp^2 + \hat{m}_q^2}{x} \right) \right], \end{aligned} $
(8) where
$ \bar{x} = 1-x $ ,$ A_{2;D} $ is the normalization constant,$ \beta_{2;D} $ is a harmonious parameter that dominates the WF's transverse distribution, and$ \varphi_{2;D}(x,\mu) $ dominates the WF's longitudinal distribution.By substituting Eq. (8) into Eq. (7), the expression of the D-meson leading-twist DA
$ \phi_{2;D}(x,\mu_0) $ can be obtained:$ \begin{aligned}[b] \phi_{2;D}(x,\mu) =& \frac{\sqrt{6}A_{2;D}\beta_{2;D}^2}{\pi^2 f_D} x\bar{x} \varphi_{2;D}(x) \\ & \times \exp \left[ - \frac{\hat{m}_c^2x + \hat{m}_q^2\bar{x}}{8\beta_{2;D}^2 x\bar{x}} \right] \\& \times \left\{ 1 - \exp \left[ - \frac{\mu^2}{8\beta_{2;D}^2 x\bar{x}} \right] \right\}.\end{aligned} $
(9) Following the method for constructing the D-meson leading-twist DA, the LCHO models for the D-meson twist-3 DAs
$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ are expressed as follows:$ \begin{aligned}[b] \phi_{3;D}^p(x,\mu) =& \frac{\sqrt{6}A_{3;D}^p (\beta_{3;D}^p)^2}{\pi^2 f_D} x\bar{x} \varphi_{3;D}^p(x) \\ & \times \exp \left[ - \frac{\hat{m}_c^2x + \hat{m}_q^2\bar{x}}{8(\beta_{3;D}^p)^2 x\bar{x}} \right] \\ &\times \left\{ 1 - \exp \left[ - \frac{\mu^2}{8(\beta_{3;D}^p)^2 x\bar{x}} \right] \right\}, \end{aligned} $
(10) and
$ \begin{aligned}[b] \phi_{3;D}^\sigma(x,\mu) =& \frac{\sqrt{6}A_{3;D}^\sigma (\beta_{3;D}^\sigma)^2}{\pi^2 f_D} x\bar{x} \varphi_{3;D}^\sigma(x) \\ &\times \exp \left[ - \frac{\hat{m}_c^2x + \hat{m}_q^2\bar{x}}{8(\beta_{3;D}^\sigma)^2 x\bar{x}} \right] \\ &\times \left\{ 1 - \exp \left[ - \frac{\mu^2}{8(\beta_{3;D}^\sigma)^2 x\bar{x}} \right] \right\}, \end{aligned} $
(11) respectively.
For the longitudinal distribution functions
$ \varphi_{2;D}(x) $ ,$ \varphi_{3;D}^p(x) $ , and$ \varphi_{3;D}^\sigma(x) $ , we used to take the first five terms of Gegenbauer expansions for the corresponding DAs in Refs. [18, 19]. As discussed in Ref. [29, 35], higher order Gegenbauer polynomials introduce spurious oscillations [31], while the corresponding coefficients obtained by directly solving the constraints of Gegenbauer moments or ξ-moments are not reliable. We improve these three longitudinal distribution functions as follows:$\varphi_{2;D}(x) = \left[ x(1-x) \right]^{\alpha_{2;D}} \left[ 1 + \hat{B}_1^{2;D} C_1^{3/2}(2x-1) \right],$
(12) $ \varphi_{3;D}^p(x) = \left[ x(1-x) \right]^{\alpha_{3;D}^p} \left[ 1 + \hat{B}_{1,p}^{3;D} C_1^{1/2}(2x-1) \right],$
(13) $\varphi_{3;D}^\sigma(x) = \left[ x(1-x) \right]^{\alpha_{3;D}^\sigma} \left[ 1 + \hat{B}_{1,\sigma}^{3;D} C_1^{3/2}(2x-1) \right].$
(14) Considering the normalization conditions for the D-meson twist-2, 3 DAs
$ \phi_{2;D}(x,\mu) $ ,$ \phi_{3;D}^p(x,\mu) $ , and$ \phi_{3;D}^p(x,\mu) $ , that is,$ \begin{aligned}[b] \int^1_0 {\rm d} x \phi_{2;D}(x,\mu) = \int^1_0 {\rm d} x \phi_{3;D}^p(x,\mu) \end{aligned} $
$ \begin{aligned}[b] = \int^1_0 {\rm d} x \phi_{3;D}^\sigma(x,\mu) = 1, \end{aligned} $
(15) there are three undetermined parameters in the LCHO models for DAs
$ \phi_{2;D}(x,\mu) $ ,$ \phi_{3;D}^p(x,\mu) $ , and$ \phi_{3;D}^p(x,\mu) $ , respectively, which are taken as the fitting parameters to fit the first 10 ξ-moments② of corresponding DAs by adopting the least squares method in next section.It should be noted that the D-meson twist-2, 3 DAs are the universal non-perturbative parameters in essence, and non-perturbative QCD should be used to study them in principle. However, owing to the difficulty of non-perturbative QCD, in the present study, these DAs are examined by combining the phenomenological model, that is, the LCHO model, and the non-perturbative QCD SRs in the framework of BFT. Otherwise, the improvement of the LCHO model of DAs
$ \phi_{2;D}(x,\mu) $ ,$ \phi_{3;D}^p(x,\mu) $ , and$ \phi_{3;D}^p(x,\mu) $ , that is, to reconstruct their longitudinal distribution functions, is only based on mathematical considerations. The rationality of this improvement can be judged by the goodness of fit. -
To perform the numerical calculation for the ξ-moments of the D-meson twist-2, 3 DAs, we take the scale
$ \mu = M $ as usual and take$ \Lambda_{\rm QCD}^{(n_f)} \simeq $ 324, 286, 207 MeV for the numbers of quark flavors$ n_f = $ 3, 4, 5, respectively [29, 35]. For other inputs, we take [41]$ \begin{array}[b] m_{D^-} =1869.66 \pm 0.05 ~{\rm MeV}, \\ f_D = 203.7 \pm 4.7 \pm 0.6 ~{\rm MeV}, \\ \bar{m}_c(\bar{m}_c) = 1.27 \pm 0.02 ~{\rm GeV}, \\ m_d(2~{\rm GeV}) = 4.67^{+0.48}_{-0.17} ~{\rm MeV}, \end{array} $
(16) $ \begin{aligned}[b] &\left<\bar{q}q\right>(2{\rm GeV}) = \left( -2.417^{+0.227}_{-0.114} \right) \times 10^{-2} {\rm GeV}^3, \\ &\left<g_s\bar{q}\sigma TGq\right>(2{\rm GeV}) = \left( -1.934^{+0.188}_{-0.103} \right) \times 10^{-2} {\rm GeV}^5, \\ & \left<g_s\bar{q}q\right>^2(2{\rm GeV}) = \left( 2.082^{+0.734}_{-0.697} \right) \times 10^{-3} {\rm GeV}^6, \\ & \left<\alpha_sG^2\right> = 0.038 \pm 0.011 {\rm GeV}^4, \\ & \left<g_s^3fG^3\right> = 0.045 {\rm GeV}^6.\end{aligned} $
(17) The renormalization group equations of these inputs are [29]
$ \begin{aligned}[b] & m_d (\mu) = m_d (\mu_0) \left[ \frac{\alpha_s(\mu_0)}{\alpha_s(\mu)} \right]^{-4/\beta_0}, \\ &\bar{m}_c (\mu) = \bar{m}_c (\bar{m}_c) \left[ \frac{\alpha_s(\bar{m}_c)}{\alpha_s(\mu)} \right]^{-4/\beta_0}, \\ &\langle \bar{q}q\rangle (\mu) = \langle \bar{q}q\rangle (\mu_0) \left[ \frac{\alpha_s(\mu_0)}{\alpha_s(\mu)} \right]^{4/\beta_0}, \\ &\langle g_s\bar{q}\sigma TGq\rangle (\mu) = \langle g_s\bar{q}\sigma TGq\rangle (\mu_0) \left[ \frac{\alpha_s(\mu_0)}{\alpha_s(\mu)} \right]^{-2/(3\beta_0)}, \\ & \langle g_s\bar{q}q\rangle^2 (\mu) = \langle g_s\bar{q}q\rangle^2 (\mu_0) \left[ \frac{\alpha_s(\mu_0)}{\alpha_s(\mu)} \right]^{4/\beta_0}, \\ & \langle \alpha_s G^2\rangle (\mu) = \langle \alpha_s G^2\rangle (\mu_0), \\ & \langle g_s^3fG^3\rangle (\mu) = \langle g_s^3fG^3\rangle (\mu_0), \end{aligned} $
(18) with
$ \beta_0 = (33-2n_f)/3 $ . For the continuum threshold, we used to take$ s_D \simeq 6.5 {\rm GeV}^2 $ in Ref. [18, 19]. This value comes from the square of the mass of the D-meson's first exciting state, i.e.,$ D^0(2550) $ , as suggested by Refs. [43, 44]. In Refs. [29, 35], we took the continuum threshold parameters$ s_\pi $ and$ s_K $ by requiring that there are reasonable Borel windows to normalize the zeroth ξ-moments of the pion and kaon leading-twist DAs. In this study, we follow the suggestion in Refs. [29, 35] and obtain$s_D \simeq 6.0 ~{\rm GeV}^2$ . -
Thus, we can calculate the values of the ξ-moments of the D-meson twist-2, 3 DAs with the sum rules (4), (5), and (6). First, we need to determine the appropriate Borel windows for these ξ-moments by following usual criteria, such as the minimum contributions of the continuum state and dimension-six condensate and stable values of these ξ-moments in corresponding Borel windows. Table 1 presents the limits to the continuum state's contributions and the dimension-six condensate's contributions for the first 10 ξ-moments of the D-meson twist-2, 3 DAs. Here, the symbol "
$ - $ " indicates that the corresponding continuum state's contribution is smaller than 10% or the dimension-six condensate's contribution is far smaller than 5% over a wide Borel parameter region. This is reasonable because both the continuum state's contribution and the dimension-six condensate's contribution are depressed by the sum rules of the zeroth ξ-moments in the denominator of the new sum rule formulae (4), (5), and (6). Compared with the criteria presented in Tables 1 and 4 in Ref. [19], the criteria listed in Table 1 are far stricter, which reflects one of the advantages of the new sum rule formulae (4), (5), and (6); that is, they reduce the system uncertainty of the sum rule. Thus, for these ξ-moments, only the upper or lower limits of the corresponding Borel windows are clearly determined. To obtain complete Borel windows, we directly take their lengths as$ 1\; {\rm GeV}^2 $ . Figure 1 shows the D-meson twist-2, 3 DA ξ-moments$ \langle \xi^n\rangle _{2;D} $ ,$ \langle \xi^n_p\rangle _{3;D} $ , and$ \langle \xi^n_\sigma\rangle _{3;D} $ with$(n=1,2,\cdots,10)$ versus the Borel parameter$ M^2 $ . Here, the uncertainties caused by the errors of input parameters are not drawn, to clearly show the curves of different ξ-moments. Meanwhile, the Borel windows are shown with the shaded bands. By taking all error sources, such as the D-meson mass and decay constant, u- and c-quark masses, vacuum condensates, etc., shown in Eqs. (16) and (17), into consideration and adding the uncertainties in quadrature, the values of the first 10 ξ-moments of the D-meson twist-2, 3 DAs are obtained, as shown in Table 2. Here, we give the first two Gegenbauer moments of the D-meson twist-2, 3 DAs for reference, that is,Continue Contribution
(%)Dimension-six Contribution
(%)Continue Contribution
(%)Dimension-six Contribution
(%)$ \left <\xi^1\right>_{2;D} $ $<15 $ $<10 $ $ \left<\xi^2\right>_{2;D} $ $<20 $ $<10 $ $ \left<\xi^3\right>_{2;D} $ $ - $ $<15 $ $ \left<\xi^4\right>_{2;D} $ $<20 $ $<15 $ $ \left<\xi^5\right>_{2;D} $ $ - $ $<20 $ $ \left<\xi^6\right>_{2;D} $ $<20 $ $<20 $ $ \left<\xi^7\right>_{2;D} $ $ - $ $<25 $ $ \left<\xi^8\right>_{2;D} $ $<20 $ $<20 $ $ \left<\xi^9\right>_{2;D} $ $ - $ $<25 $ $ \left<\xi^{10}\right>_{2;D} $ $<20 $ $<20 $ $ \left<\xi^1_p\right>_{3;D} $ $ - $ $<5 $ $ \left<\xi^2_p\right>_{3;D} $ $<15 $ $<10 $ $ \left<\xi^3_p\right>_{3;D} $ $ - $ $<10 $ $ \left<\xi^4_p\right>_{3;D} $ $<15 $ $<10 $ $ \left<\xi^5_p\right>_{3;D} $ $ - $ $<15 $ $ \left<\xi^6_p\right>_{3;D} $ $<15 $ $<10 $ $ \left<\xi^7_p\right>_{3;D} $ $ - $ $<15 $ $ \left<\xi^8_p\right>_{3;D} $ $<15 $ $<10 $ $ \left<\xi^9_p\right>_{3;D} $ $ - $ $<15 $ $ \left<\xi^{10}_p\right>_{3;D} $ $<15 $ $<10 $ $ \left<\xi^1_\sigma\right>_{3;D} $ $<20 $ $ - $ $ \left<\xi^2_\sigma\right>_{3;D} $ $<45 $ $ - $ $ \left<\xi^3_\sigma\right>_{3;D} $ $<20 $ $<5 $ $ \left<\xi^4_\sigma\right>_{3;D} $ $<45 $ $ - $ $ \left<\xi^5_\sigma\right>_{3;D} $ $<25 $ $<5 $ $ \left<\xi^6_\sigma\right>_{3;D} $ $<45 $ $ - $ $ \left<\xi^7_\sigma\right>_{3;D} $ $<25 $ $<5 $ $ \left<\xi^8_\sigma\right>_{3;D} $ $<45 $ $ - $ $ \left<\xi^9_\sigma\right>_{3;D} $ $<25 $ $<5 $ $ \left<\xi^{10}_\sigma\right>_{3;D} $ $<45 $ $ - $ Table 1. Criteria for determining the Borel windows of the first 10 ξ-moments of the D-meson twist-2, 3 DAs.
Figure 1. (color online) D-meson twist-2, 3 DA ξ-moments
$ \langle \xi^n\rangle _{2;D} $ ,$ \langle \xi^n_p\rangle _{3;D} $ , and$ \langle \xi^n_\sigma\rangle _{3;D} $ with$(n=1,2,\cdots,10)$ versus the Borel parameter$ M^2 $ . To clearly show the curves of different ξ-moments, only the central values of ξ-moments are given, which are obtained by taking the central values of the input parameters shown in Eqs. (16) and (17).$ \left<\xi^1\right>_{2;D} $ $ -0.349^{+0.037}_{-0.037} $ $ \left<\xi^2\right>_{2;D} $ $ 0.251^{+0.014}_{-0.014} $ $ \left<\xi^3\right>_{2;D} $ $ -0.152^{+0.012}_{-0.012} $ $ \left<\xi^4\right>_{2;D} $ $ 0.117^{+0.010}_{-0.010} $ $ \left<\xi^5\right>_{2;D} $ $ -0.0883^{+0.0072}_{-0.0072} $ $ \left<\xi^6\right>_{2;D} $ $ 0.0715^{+0.0084}_{-0.0084} $ $ \left<\xi^7\right>_{2;D} $ $ -0.0606^{+0.0054}_{-0.0054} $ $ \left<\xi^8\right>_{2;D} $ $ 0.0479^{+0.0052}_{-0.0052} $ $ \left<\xi^9\right>_{2;D} $ $ -0.0429^{+0.0034}_{-0.0034} $ $ \left<\xi^{10}\right>_{2;D} $ $ 0.0348^{+0.0035}_{-0.0035} $ $ \left<\xi^1_p\right>_{3;D} $ $ -0.555^{+0.063}_{-0.061} $ $ \left<\xi^2_p\right>_{3;D} $ $ 0.430^{+0.034}_{-0.036} $ $ \left<\xi^3_p\right>_{3;D} $ $ -0.325^{+0.026}_{-0.023} $ $ \left<\xi^4_p\right>_{3;D} $ $ 0.272^{+0.017}_{-0.020} $ $ \left<\xi^5_p\right>_{3;D} $ $ -0.232^{+0.019}_{-0.017} $ $ \left<\xi^6_p\right>_{3;D} $ $ 0.209^{+0.014}_{-0.017} $ $ \left<\xi^7_p\right>_{3;D} $ $ -0.185^{+0.019}_{-0.017} $ $ \left<\xi^8_p\right>_{3;D} $ $ 0.175^{+0.016}_{-0.017} $ $ \left<\xi^9_p\right>_{3;D} $ $ -0.163^{+0.017}_{-0.016} $ $ \left<\xi^{10}_p\right>_{3;D} $ $ 0.157^{+0.015}_{-0.016} $ $ \left<\xi^1_\sigma\right>_{3;D} $ $ -0.376^{+0.021}_{-0.021} $ $ \left<\xi^2_\sigma\right>_{3;D} $ $ 0.280^{+0.023}_{-0.023} $ $ \left<\xi^3_\sigma\right>_{3;D} $ $ -0.188^{+0.020}_{-0.019} $ $ \left<\xi^4_\sigma\right>_{3;D} $ $ 0.141^{+0.012}_{-0.013} $ $ \left<\xi^5_\sigma\right>_{3;D} $ $ -0.1078^{+0.0104}_{-0.0103} $ $ \left<\xi^6_\sigma\right>_{3;D} $ $ 0.0890^{+0.0077}_{-0.0079} $ $ \left<\xi^7_\sigma\right>_{3;D} $ $ -0.0735^{+0.0055}_{-0.0054} $ $ \left<\xi^8_\sigma\right>_{3;D} $ $ 0.0635^{+0.0054}_{-0.0055} $ $ \left<\xi^9_\sigma\right>_{3;D} $ $ -0.0550^{+0.0037}_{-0.0036} $ $ \left<\xi^{10}_\sigma\right>_{3;D} $ $ 0.0489^{+0.0041}_{-0.0042} $ Table 2. First 10 ξ-moments of the D-meson twist-2, 3 DAs
$ \phi_{2;D}(x,\mu) $ ,$ \phi_{3;D}^p(x,\mu) $ , and$ \phi_{3;D}^\sigma(x,\mu) $ at scale$ \mu = 2\; {\rm GeV} $ .$ \begin{array}{l} a_1^{2;D} = -0.582^{+0.062}_{-0.062}, \quad\quad a_2^{2;D} = 0.148^{+0.042}_{-0.042}, \\ a_{1,p}^{3;D} = -1.665^{+0.188}_{-0.182}, \quad\quad a_{2,p}^{3;D} = 0.726^{+0.252}_{-0.273}, \\ a_{1,\sigma}^{3;D} = -0.626^{+0.036}_{-0.035}, \quad\quad a_{2,\sigma}^{3;D} = 0.232^{+0.067}_{-0.068}, \end{array} $
(19) at scale
$\mu = 2~{\rm GeV}$ .In the above work, to calculate the ξ-moments of D-meson twist-3 DAs
$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ , one should calculate the normalization constants$ \mu_D^p $ and$ \mu_D^\sigma $ first. Under the assumption that the sum rules of zeroth ξ-moments$ \left<\xi^0_p\right>_{3;D} $ and$ \left<\xi^0_\sigma\right>_{3;D} $ can be normalized in appropriate Borel windows, the sum rules of$ \mu_D^p $ and$ \mu_D^\sigma $ can be obtained by taking$ n=0 $ in Eqs. (5) and (6) and substituting$ \left<\xi^0_p\right>_{3;D} = \left<\xi^0_\sigma\right>_{3;D} = 1 $ into these two sum rules. We require the continuum state's contributions to be less than 30% and the dimension-six condensate's contributions to be no more than 5% and 0.5% to determine the Borel windows for$ \mu_D^p $ and$ \mu_D^\sigma $ , respectively. By adding the uncertainties derived from all the error sources in quadrature, we obtain$ \mu_D^p = 2.717^{+0.087}_{-0.087}, \quad\quad \mu_D^\sigma = 2.231^{+0.073}_{-0.068}, $
(20) at scale
$ \mu = 2{\rm GeV} $ . Compared with the values in Ref. [19],$ \mu_D^p $ in (20) is increased by approximately 7.2%, and$ \mu_D^\sigma $ is reduced by approximately 12.0%. The former is caused by the update of input parameters, and the latter is caused by the new sum rule formula, i.e., Eq. (6), in addition to the update of input parameters.Then, we can determine the model parameters of our LCHO models for the D-meson twist-2 DA
$ \phi_{2;D}(x,\mu) $ and twist-3 DAs$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ by using the ξ-moments presented in Table 2 via the least squares method following the method suggested in Refs. [29, 35]. Taking the D-meson leading-twist DA$ \phi_{2;D}(x,\mu) $ as an example, we first take the fitting parameters θ as the undetermined LCHO model parameters$ \alpha_{2;D} $ ,$ B_1^{2;D} $ and$ \beta_{2;D} $ , i.e.,$\theta = (\alpha_{2;D}, B_1^{2;D}, \beta_{2;D})$ , as discussed in Sec. II.B. By minimizing the likelihood function$ \chi^2(\theta) = \sum\limits_{i=1}^{10} \frac{(y_i - \mu(i,\theta))^2}{\sigma_i^2}, $
(21) the optimal values of the fitting parameters θ that we are looking for can be obtained. In Eq. (21), i represents the order of the ξ-moments of
$ \phi_{2;D}(x,\mu) $ ; the central values of ξ-moments$\langle\xi^n\rangle_{2;D} (n = 1,2,\cdots,10)$ , whose errors are presented in Table 2, are regarded as the independent measurements$ y_i $ and the corresponding variance$ \sigma_i $ . One can intuitively judge the goodness of fit according to the magnitude of probability$P_{\chi^2_{\rm min}} = \int^\infty_{\chi^2_{\rm min}} f(y;n_d) {\rm d} y$ with the probability density function of$ \chi^2(\theta) $ , i.e.,$f(y; n_d) = \dfrac{1}{\Gamma(n_d/2) 2^{n_d/2}}\times y^{n_d/2 - 1} {\rm e}^{-y/2}$ , where$ n_d $ represents the number of degrees of freedom. The obtained optimal values of the model parameters$ \alpha_{2;D} $ ,$ B_1^{2;D} $ , and$ \beta_{2;D} $ at scale$ \mu = 2\; {\rm GeV} $ and the corresponding goodness of fit are presented in Table 3. Following the same procedure, the LCHO model parameters for the D-meson twist-3 DAs$ \phi^p_{3;D}(x,\mu) $ and$ \phi^\sigma_{3;D}(x,\mu) $ at scale$ \mu = 2\; {\rm GeV} $ and the corresponding goodness of fits are obtained, as shown in Table 3. Then, the corresponding behaviors of DAs$ \phi_{2;D}(x,\mu) $ ,$ \phi^p_{3;D}(x,\mu) $ , and$ \phi^\sigma_{3;D}(x,\mu) $ are determined. To intuitively show the behaviors of these three DAs, we present their curves in Fig. 2. For comparison, the results of models reported in the literature for the D-meson leading-twist DA$ \phi_{2;D}(x,\mu) $ , i.e., the KLS model [22], LLZ model [23], LM model [24], and the form with LFQM [28], and our previous research results [18, 19] for$ \phi_{2;D}(x,\mu) $ ,$ \phi^p_{3;D}(x,\mu) $ , and$ \phi^\sigma_{3;D}(x,\mu) $ based on the LCHO model are also shown. In Fig. 2, we observe that our prediction for$ \phi_{2;D}(x,\mu) $ is closest to that of the LM model. Compared with the KLS and LLZ models, our$ \phi_{2;D}(x,\mu) $ is narrower and supports a large momentum distribution of the valence quark in$ x \sim $ [0.05, 0.5]. Compared with our previous work reported in Refs. [18, 19], our new predictions for$ \phi_{2;D}(x,\mu) $ ,$ \phi^p_{3;D}(x,\mu) $ , and$ \phi^\sigma_{3;D}(x,\mu) $ presented in this paper are smoother, and the spurious oscillations introduced by the high-order Gegenbauer moments in the old LCHO model are eliminated.$A_{2;D}/{\rm GeV}^{-1}$ $ \alpha_{2;D} $ $ B_1^{2;D} $ $\beta_{2;D}/{\rm GeV}$ $ \chi^2_{\rm min} $ $ P_{\chi^2_{\rm min}} $ $ 34.4712 $ $ -0.861 $ $ 0.107 $ $ 0.535 $ $ 0.873219 $ $ 0.996623 $ $A_{3;D}^p/{\rm GeV}^{-1}$ $ \alpha_{3;D}^p $ $ B_{1,p}^{3;D} $ $\beta_{3;D}^p/{\rm GeV}$ $ \chi^2_{\rm min} $ $ P_{\chi^2_{\rm min}} $ $ 0.536764 $ $ -1.360 $ $ -0.922 $ $ 1.135 $ $ 2.39892 $ $ 0.934514 $ $A_{3;D}^\sigma/{\rm GeV}^{-1}$ $ \alpha_{3;D}^\sigma $ $ B_{1,\sigma}^{3;D} $ $\beta_{3;D}^\sigma/{\rm GeV}$ $ \chi^2_{\rm min} $ $ P_{\chi^2_{\rm min}} $ $ 28.9986 $ $ -1.403 $ $ 0.228 $ $ 0.484 $ $ 0.594628 $ $ 0.999021 $ Table 3. Goodness of fit and the values of the LCHO model parameters for the D-meson twist-2 DA
$ \phi_{2;D}(x,\mu) $ and twist-3 DAs$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ at scale$ \mu = 2\; {\rm GeV} $ .Figure 2. (color online) Curves of the D-meson twist-2 DA
$ \phi_{2;D}(x,\mu) $ and twist-3 DAs$ \phi_{3;D}^p(x,\mu) $ and$ \phi_{3;D}^\sigma(x,\mu) $ at scale$ \mu = 2\; {\rm GeV} $ . The results of models reported in the literature, i.e., the KLS model [22], LLZ model [23], LM model [24], and the form with LFQM [28], and our previous research results [18, 19] based on the LCHO model are shown for comparison.
Revisiting D-meson twist-2, 3 distribution amplitudes
- Received Date: 2022-12-13
- Available Online: 2023-05-15
Abstract: Owing to the significant difference between the experimental measurements and the theoretical predictions of the standard model (SM) for the value of