Analytical System Modeling Method for SPECT Based on the Boltzmann Transport Equation

Get Citation
MA Tian-Yu and JIN Yong-Jie. Analytical System Modeling Method for SPECT Based on the Boltzmann Transport Equation[J]. Chinese Physics C, 2006, 30(8): 806-811.
MA Tian-Yu and JIN Yong-Jie. Analytical System Modeling Method for SPECT Based on the Boltzmann Transport Equation[J]. Chinese Physics C, 2006, 30(8): 806-811. shu
Milestone
Received: 2005-11-08
Revised: 2006-01-13
Article Metric

Article Views(1088)
PDF Downloads(635)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Analytical System Modeling Method for SPECT Based on the Boltzmann Transport Equation

    Corresponding author: MA Tian-Yu,
  • Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Abstract: In single photon emission computed tomography (SPECT), accurately modeling of the physics of SPECT imaging process is essential to degrading factor compensation and image quality enhancement. In this paper, an analytical SPECT modeling method is proposed based on the theory of the Boltzmann transport equation and its Neumann series solution. The analytical model was numerically evaluated using high dimensional integration algorithm based on number theory. SPECT projection images for both uniform cylinder phantom with point source and NCAT phantom were calculated and compared with those which were generated by conventional Monte-Carlo modeling methods. Results show that the analytical modeling method demonstrates improved performance in computation accuracy and speed relative to the Monte-Carlo method, as well as the advantage that the computational results of the analytical method are free from statistical noise. Therefore, we conclude that the analytical method is more appropriate for modeling the SPECT imaging process than Monte-Carlo modeling methods.

    HTML

Reference (1)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return