Quantum computing for Lipkin model with unitary coupled cluster and structure learning ansatz

Figures(10)

Get Citation
Asahi Chikaoka and Haozhao Liang. Quantum computing for Lipkin model with unitary coupled cluster and structure learning ansatz[J]. Chinese Physics C.
Asahi Chikaoka and Haozhao Liang. Quantum computing for Lipkin model with unitary coupled cluster and structure learning ansatz[J]. Chinese Physics C. shu
Milestone
Received: 2021-11-10
Article Metric

Article Views(26)
PDF Downloads(4)
Cited by(0)
Policy on re-use
To reuse of subscription content published by CPC, the users need to request permission from CPC, unless the content was published under an Open Access license which automatically permits that type of reuse.
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Email This Article

Title:
Email:

Quantum computing for Lipkin model with unitary coupled cluster and structure learning ansatz

  • 1. Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
  • 2. RIKEN Nishina Center, Wako 351-0198, Japan

Abstract: We report a benchmark calculation for the Lipkin model in nuclear physics with the variational quantum eigensolver in quantum computing. Special attention is paid to the unitary coupled cluster (UCC) ansatz and structure learning (SL) ansatz for the trial wave function. Meanwhile, both calculations with the UCC and SL ansatz can reproduce the ground-state energy well, it is found that the calculation with the SL ansatz performs better than that with the UCC ansatz, and the SL ansatz has even fewer quantum gates than the UCC ansatz.

    HTML

    I.   INTRODUCTION
    • The Lipkin model, in other words, the Lipkin-Meshkov-Glick (LMG) model [14] was proposed in 1965 for benchmarking the quantum many-body techniques developed in nuclear physics and relevant fields. Specifically, the Lipkin model allows one to testify the many-body methods, such as the many-body perturbation theory, the random phase approximation, and the large-N expansion, and to examine their range of validity with respect to the strength of the two-body interaction.

      During the past decades, many interesting aspects of the Lipkin model have been found. For example, in the field of nuclear physics, this model has been connected to the collective monopole vibrations (or breath modes) for spherical nuclei [5]. In the field of chemistry, this model has been applied for describing the magnetic properties of molecules such as Mn12 acetate [6]. In the field of quantum information, this model has also been used in the studies of the entanglement properties in its ground state [79].

      In a more general sense, solving quantum many-body problems is one of the most important challenges in a wide range of research fields, including nuclear physics, condensed matter physics, quantum chemistry, and so on [10, 11]. On the one hand, the usual methods for directly solving the wave-function equation are facing critical difficulties due to the exponential increase of computational cost with respect to the particle number of the system. On the other hand, during the past years, it is gradually believed that quantum computing will become one of the promising ways in the future to solve this problem [12]. Nevertheless, the current quantum computers are limited to 20–100 qubits and the coherence time is too short to carry out direct simulations of the quantum many-body systems [13].

      Meanwhile, the quantum-classical hybrid variational quantum eigensolver (VQE) [1421] has been developed to take advantage of the quantum computers while reducing the depth of the circuit and the number of qubits. The algorithm was first demonstrated on a photonic quantum computer [13] and has also been verified on superconducting quantum computers [14, 20, 22] as well as trapped ion quantum computers [23, 24]. A number of calculations have been done in quantum chemistry using VQE, such as the ground-state energies of BeH2, H2, and LiH [22].

      There are also several applications of VQE in nuclear physics [2527]. One of the examples is the recent study of the VQE method for the Lipkin model [28]. However, it is still an open question what kind of VQE ansatz should be used for a given Hamiltonian in nuclear physics. So far, the ansatz on quantum circuits is basically prepared heuristically for a given Hamiltonian and not valid for other Hamiltonians.

      Keeping in mind that the VQE ansatz require the properties of compactness, a small number of parameters, wide expressibility, and fast convergence. In this study, we will benchmark two kinds of ansatz, the conventional unitary coupled cluster (UCC) ansatz [17, 29] and the newly developed structure learning (SL) ansatz[30], by using the Lipkin model, which has the known exact solutions. Furthermore, we investigate the performance of two ansatz in the Lipkin model.

    II.   LIPKIN MODEL
    • The Lipkin model [14] describes a system of N distinguishable fermions, which are distributed in two levels. Each level has an Ω-fold degeneracy and the energy difference between two levels is ε. One usually takes $ \Omega = N $, which corresponds to the half-filled case. Each particle is labelled by the quantum number p, and each single-particle state is characterized by a quantum number σ, which has the values $ \pm1 $ in the upper and lower shells, respectively. A two-body interaction is assumed to scatter pairs of particles between the two levels without changing the value of p.

      Let $ a^\dagger_{p, \sigma} $ be the creation operator for a particle in the p state of the σ-level. The Hamiltonian for the system can then be expressed as

      $ H = \frac{1}{2} \sum\limits_{p \sigma} \sigma a_{p, \sigma}^{\dagger} a_{p, \sigma}+\frac{1}{2N} v \sum\limits_{p p^{\prime} \sigma} a_{p, \sigma}^{\dagger} a_{p^{\prime}, \sigma}^{\dagger} a_{p^{\prime},-\sigma} a_{p,-\sigma} , $

      (1)

      where v is the relative interaction strength, while the energy difference has been normalized to $ \varepsilon = 1 $. The second term in Eq. (1) represents the scattering of a pair of particles from a certain level to the other level. Comparing with the full Lipkin model in Ref. [1], the contribution that one particle is scattered up and the other is scattered down is not considered here.

      Each particle with a quantum number p must be either in the upper or lower state. The number of states of the whole system is thus $ 2^N $ and the diagonalization of the Hamiltonian (1) involves a matrix of dimension $ 2^N $, which goes exponentially. However, the symmetries in this system allow a sizeable reduction in the dimension of the matrix to be diagonalized.

      As pointed out in the original paper [1], each particle has only two possible states. This fact thus instantly suggests the utilization of a quasi-spin formulation. The total quasi-spin operators of this system can be defined by the following equations:

      $ J_+ = \sum\limits_{p} a_{p,+1}^{\dagger} a_{p,-1}, \tag{2a}$

      $ J_- = \sum\limits_{p} a_{p,-1}^{\dagger} a_{p,+1},\tag{2b} $

      $ J_{z} = \frac{1}{2} \sum\limits_{p \sigma} \sigma a_{p, \sigma}^{\dagger} a_{p, \sigma}. \tag{2c}$

      It is easy to check that these operators satisfy the angular momentum commutation relations. The Hamiltonian is thus expressed in terms of these operators as

      $ H = J_{z}+\frac{1}{2N} v\left(J_+^{2}+J_-^{2}\right) . $

      (3)

      The spin operators $ J_x $, $ J_y $, and $ J_z $, where $ J_x $ and $ J_y $ are written as $ \dfrac{1}{2}(J_+ + J_-) $ and $ \dfrac{1}{2i}(J_+ - J_-) $, respectively, are the sum of the Pauli matrices $ \sigma_x $, $ \sigma_y $, and $ \sigma_z $, respectively. Therefore, the qubit representation of the Hamiltonian (3) is expressed as [7]

      $ H = -\frac{1}{2} \sum\limits_{i = 1}^{N} Z_{i}+\frac{1}{4N} v \sum\limits_{i, j = 1}^{N}\left(X_{i} X_{j}-Y_{i} Y_{j}\right) . $

      (4)
    III.   VARIATIONAL QUANTUM EIGENSOLVER
    • In this study, we will adopt the quantum-classical hybrid VQE algorithm [16, 17] to find the ground-state energy of the Lipkin model. In general, the calculation steps of VQE are following: 1) generate parameterized quantum states $ \left| {\Psi (\theta )} \right\rangle $ in a quantum computer, 2) measure the energy expectation value $ \left\langle {\Psi (\theta )} \right|\hat H\left| {\Psi (\theta )} \right\rangle / $$ \left\langle {\Psi (\theta )|\Psi (\theta )} \right\rangle $ in a classical or quantum computer, 3) based on the energy expectation value, modify the parameters in a classical computer so that the energy becomes smaller further.

      Although in the present study we simulate the quantum computation in a classical computer, we should note that quantum-mechanical measurements are stochastic, and thus we will perform 1000 measurements at each evaluation of the expectation values. For each interaction strength, the ground-state energy estimations are carried out 50 times, and their medians and percentiles are obtained. In addition, in this study we use the sequential minimal optimization (SMO) method, which was proposed by Nakanishi et al. [31] for parameter optimization. The SMO method has the following advantages: faster convergence, robustness against statistical error, and hyperparameter-free optimization. The SMO method is based on the fact that the expectation value is expressed as a simple sum of trigonometric functions with certain periods. More details can be found in Ref. [31].

    • A.   Unitary coupled cluster ansatz

    • A popular method to find out the ground-state energy of a Hamiltonian in quantum computing is to use the UCC ansatz with the VQE algorithm [17, 29]. Originally, the coupled cluster (CC) method [32, 33] was established in nuclear physics and applied to quantum chemistry. In principle, the CC method provides the exact solution to the Schrödinger equation

      $ H\left| \Psi \right\rangle = E\left| \Psi \right\rangle , $

      (5)

      where $ \left| \Psi \right\rangle $ is the exact state. The state of the CC method is expressed as

      $ \left| \Psi \right\rangle = e^{T}\left| \Psi_0 \right\rangle , $

      (6)

      where T is the so-called cluster operator and $ \left| \Psi_0 \right\rangle $ is the reference state. The purpose of the cluster operator is producing a linear combination of excited states from the reference state, where the reference state is usually set as the Hartree-Fock (HF) state. The cluster operator reads

      $ T = T_1 + T_2 + \cdots, $

      (7)

      where $ T_k $ is the operator of all k-particle excitations.

      The UCC method is the modified version of CC in order to implement in the quantum computers, which only accept the unitary operators. We can define the unitary operators, which entangle n orbitals, as

      $ \begin{aligned}[b] U(\theta)& \equiv \exp\left[ \sum\limits_{ij}\theta_{ij}(a_i^{\dagger}a_j^{\dagger} - a_j a_i) \right] \\ & \mapsto \exp\left\{ i\sum\limits_{ij}\theta_{ij}\frac{(-1)^{j - i -1}}{2} \left[X_{i}\left(\prod\limits_{k = i+1}^{j-1} Z_{k}\right) Y_{j} \right.\right. \\ &+ \left.\left. Y_{i}\left(\prod\limits_{k = i+1}^{j-1} Z_{k}\right) X_{j}\right] \right\} \;, \end{aligned} $

      (8)

      where Eq. (8) is derived via the Jordan-Wigner transformation [15].

      As the next step, we should prepare the quantum circuit that represents the unitary operator $ U(\theta) $. The operator $ \exp\left[ i \theta Z_1 Z_2 \cdots Z_n\right] $ can be expressed as the following circuit.

      The operator $ \exp\left[ i \theta Z_1 \cdots X_i \cdots Y_j \cdots Z_n\right] $ is expressed by inserting the rotation-y gates, i.e., $ R_{Y}(\pi/2) $ and $ R_{Y}(-\pi/2) $ are placed at the first and last position of $ \text{q}_i $, respectively, while $ R_{X}(\pi/2) $ and $ R_{X}(-\pi/2) $ are placed at the first and last position of $ \text{q}_j $, respectively.

      Generally speaking, a unitary operator, which is a component of the UCC ansatz, is implemented on the quantum circuit with the so-called Trotter errors. However, the unitary operators in this study do not cause the Trotter errors, because $ a_i^{\dagger}a_j^{\dagger} $ and $ a_j a_i $ in the Hamiltonian always hold $ [a_i^{\dagger}a_j^{\dagger}, a_j a_i] = 0 $.

    • B.   Structure learning ansatz

    • The SL ansatz can be generated by the Rotoselect algorithm [30] and summarized in Algorithm 1. This algorithm makes an ansatz for a given Hamiltonian so that the ansatz provides the minimum energy by changing types of single-qubit gates. In this study, we prepare the rotation gates $ R_{X} $, $ R_{Y} $, and $ R_{Z} $ as single-qubit gates and select one of them at each position in the quantum circuit. We obtain the minimum energy with respect to the parameter θ at each rotation axis of the target gate that we are optimizing, while the other gates keep unchanged. Then, we choose the optimal rotation axis, which provides the minimum energy among the rotation axes. After that, we iterate this calculation for all gates and obtain the ground-state energy. See Algorithm 1 for details.

    IV.   RESULTS AND DISCUSSION
    • In the present study, we will compare the two ansatz, i.e., the UCC ansatz and the SL ansatz, for the Lipkin model with $ N = 3 $ and $ N = 4 $.

      We will calculate the ground-state energies with five different interaction strengths to examine the range of validity of the ansatz. The whole calculations will be simulated in a classical computer. In each calculation, 1000 measurements will be performed at each iteration of the parameter optimization. The following results will be accumulated by repeating the calculation for 50 times in order to estimate the amount of sampling noises.

      The quantum circuits of the UCC ansatz with $ N = 3 $ and $ N = 4 $ are shown in Fig. 1. Here, $ R_{X} $, $ R_{Y} $, and $ R_{Z} $ represent the rotation operators with respect to the X-, Y-, and Z-axes, respectively, where $ \theta_n $ represent the parameters to be optimized in the calculation. The blue bars connecting two qubits are the CNOT gates, which are two-qubit operations. The circuit for $ N = 3 $ consists of 16 CNOT gates, 30 single-qubit gates, and 3 parameters; the circuit for $ N = 4 $ consists of 40 CNOT gates, 60 single-qubit gates, and 4 parameters.

      Figure 1.  (color online) Quantum circuits for the UCC ansatz with (a) $ N = 3 $ and (b) $ N = 4 $. Here, $ R_{X} $, $ R_{Y} $, and $ R_{Z} $ represent the rotation operators with respect to the X-, Y-, and Z-axes, respectively, where $ \theta_n $ represent the parameters to be optimized in the calculation. The blue bars connecting two qubits are the CNOT gates, which are the two-qubit operations. The circuit for $ N = 3 $ consists of 16 CNOT gates, 30 single-qubit gates, and 3 parameters; the circuit for $ N = 4 $ consists of 40 CNOT gates, 60 single-qubit gates, and 4 parameters.

      One of the examples of the obtained quantum circuit for the SL ansatz with $ N = 3 $ is shown in Fig. 2. In general, the circuit for $ N = 3 $ consists of 6 CNOT gates and 9 single-qubit gates with parameters. However, some of the single-qubit gates can be selected as the identity operators I with no parameters. For example, there are 5 identity operators in the case shown in Fig. 2. For the case of $ N = 4 $, the circuit consists of 12 CNOT gates and 16 single-qubit gates with parameters, but again some of them can be selected as the identity operators. We will discuss more on the quantum circuit for the SL ansatz later.

      Figure 2.  (color online) Example of obtained quantum circuit for SL ansatz with $N=3$. Here, I and $R_{Y}$ represent the identity and the rotation operator with respect to Y-axis, respectively. The blue bars which connect two qubits are the CNOT gates. Here, d is the depth of a quantum circuit, and $\theta_n$ represents the parameters to be optimized in the calculation. In this example, the circuit for $N=3$ consists of 6 CNOT gates, 4 single-qubit gates, and 4 parameters.

      First of all, the ground-state energies of the Lipkin model with $ N = 3 $ and $ N = 4 $ are shown as a function of the interaction strength in Fig. 3. The calculated results with the UCC and SL ansatz are shown in the upper and lower panels, respectively. The distributions, medians, and quartiles of these results are shown with the so-called violin plots. For comparison, the corresponding exact ground-state energies are shown with the solid lines. It is seen that the exact ground-state energies can be in general well reproduced by both the UCC and SL ansatz. Meanwhile, all the calculated energies are above the exact values. This is due to the variational principle.

      Figure 3.  (color online) Ground-state energies of the Lipkin model with $ N = 3 $ and $ N = 4 $ as a function of interaction strength. The calculated results with the UCC and SL ansatz are shown in the upper and lower panels, respectively. The distributions, medians, and quartiles of these results are shown with the so-called violin plots. For comparison, the corresponding exact ground-state energies are shown with the solid lines.

      For the UCC ansatz, the deviations between the calculated results and the exact ground-state energies gradually increase with the increasing interaction strength. When $ v = 4.0 $, the mean relative errors $ (\bar E_{\rm{cal}} - E_{\rm{exact}})/ $$ E_{\rm{exact}} $ reach 2.2% and 3.8% for the cases of $ N = 3 $ and $ N = 4 $, respectively. Generally, a unitary operator which makes the ansatz is implemented on the quantum circuit with the Trotter errors. However, the unitary operator in this study does not contribute to the Trotter errors, because of the commutability between $ a_i^{\dagger}a_j^{\dagger} $ and $ a_j a_i $ in the Lipkin model. The cause of the difference between the exact energy and the energy with the UCC ansatz, thus, is not the Trotter errors.

      On the one hand, the calculated results by the SL ansatz are even better than those by the UCC ansatz. It is found that when $ v = 0 $, all the 50-time calculations give the exact ground-state energies. Moreover, the deviations between the calculated results and the exact values increase in a much more gentle way with the increasing interaction strength. When $ v = 4.0 $, the mean relative errors only read 0.1% and 1.6% for the cases of $ N = 3 $ and $ N = 4 $, respectively.

      On the other hand, for the $ N = 4 $ case, the variances of the calculated results obtained by the SL ansatz are larger than those by the UCC ansatz. This is because the selected gates in each position, labelled by the depth d and the qubit index q, of the quantum circuit by the Rotoselect algorithm in each calculation can be different. The options in each position include $ \{I, R_X, R_Y, R_Z\} $.

      By taking $ v = 0.0 $, 2.0, and 4.0 as examples, we show the histograms of the ground-state energies calculated with the UCC and SL ansatz in Figs. 4 and 5, respectively. In these figures, the dotted pink lines show the corresponding exact ground-state energies.

      Figure 4.  (color online) Histograms of the ground-state energies calculated with the UCC ansatz with the 50-time calculations. The dotted pink lines show the corresponding exact ground-state energies.

      Figure 5.  (color online) Same as Fig. 4 but for the results calculated with the SL ansatz.

      For variational calculations, the obtained lowest energies represent the best results, i.e., the closest results to the exact values. The difference between the best result with the UCC ansatz and the exact energy increases substantially as the interaction strength increases. In contrast, the difference between the best result with the SL ansatz and the exact energy increases only gently with the increasing interaction strength. As a result, the obtained lowest energies with the SL ansatz are much closer to the exact values than those with the UCC ansatz. In addition, the variance with the UCC ansatz becomes larger as the interaction strength becomes large. Meanwhile, the variance with the SL ansatz for $ N = 4 $ is larger than that for $ N = 3 $, with more single-qubit gates selected by the Rotoselect algorithm.

      The obtained parameters of the UCC ansatz are shown in Fig. 6. The standard errors of the results with 50-time calculations are too small to be seen in the figure. Each index of the rotation gate corresponds to each term in the UCC ansatz. For example, the parameter of the index 0 for $ N = 3 $ corresponds to the operator $ e^{\theta_0 (a^{\dagger}_0 a^{\dagger}_1 - a_1 a_0)} $. Note that the parameters at $ v = 0 $ for both cases of $ N = 3 $ and $ N = 4 $ are not 0 because the sampling noises affect the parameter optimization. In general, the parameters become larger as the interaction strength becomes larger for both $ N = 3 $ and $ N = 4 $. In addition, the difference among the parameters becomes larger as the interaction strength becomes larger for $ N = 3 $. On the other hand, for $ N = 4 $, the difference among the parameters is small, however, the parameter of the index 4 is not correctly optimized.

      Figure 6.  (color online) Parameters of the UCC ansatz with the 50-time calculations. The horizontal axis corresponds to the index of each rotation gates.

      One of the examples of the obtained quantum circuit for the SL ansatz is shown in Fig. 2. In this example, the rotation gates $ R_Y $ are selected in the positions $ (d, q) = (0,0), (0,1), (1,0), (2,1) $, the identity gates I are selected in $ (d, q) = (0,2), (1,1), (1,2), (2,0), (2,2) $, and no $ R_X $ nor $ R_Z $ gates are selected.

      For all 50-time calculations, the statistics of the selected rotation axes at each qubit and each depth for the SL ansatz with the Rotoselect algorithm are shown in Fig. 7 for both cases of $ N = 3 $ and $ N = 4 $. The results of the selections vary in each calculation because of the statistical errors. Due to the changing the selected gates in each calculation, the variances of the obtained energies become large (see Fig. 5). It can be seen that $ R_{Y} $ is intensively selected at some specific positions of the quantum circuit according to the 50-time calculations. These results suggest that the rotation gate $ R_{Y} $ improves the expressibility of a parameterized quantum circuit.

      Figure 7.  (color online) Selected rotation axes at each qubit and depth for the SL ansatz with $ N = 3 $ and $ N = 4 $. These data are generated with the 50-time calculations. Here, N, v, d, and q are the number of particle, the interaction strength, the depth of a quantum circuit, and the index of qubits, respectively.

      The optimized wave functions are shown in Figs. 8 and 9, where the vertical axes represent the probabilities, precisely speaking the probability amplitudes, of the obtained wave functions.

      Figure 8.  (color online) Probabilities of each state in the system ground-state wave function with the UCC ansatz. Their distributions, medians, and quartiles with the 50-time calculations are shown with the violin plots. The upper panels represent the results with $ N = 3 $ and the lower ones represent the results with $ N = 4 $.

      Figure 9.  (color online) Same as Fig. 8 but for the results calculated with the SL ansatz.

      Generally, the system wave functions are represented by

      $ \left| \Psi \right\rangle = \sum\limits_n c_n \left| n \right\rangle \;, $

      (9)

      where $ c_n $ is the coefficient of the state $ \left| n \right\rangle \equiv \left| {{n_1},{n_2}, \cdots ,{n_N}} \right\rangle $. The corresponding probabilities $ P_n $ read

      $ P_n = |c_n|^2 \;, $

      (10)

      which can be estimated by accumulating the statistics of measurement outcomes of $ \left| n \right\rangle $ in a quantum computer.

      The probabilities of each state in the system ground-state wave function are shown in Figs. 8 and 9 for the UCC and SL ansatz, respectively, where the violin plots show the corresponding distributions, medians, and quartiles with the 50-time calculations. Because of the symmetries of the Lipkin Hamiltonian, the states with the same number of single-particle excitations (i.e., the same value of $ n_1 + n_2 + \cdots + n_N $) should have the same probability. It can be seen from the figures that such a property is much better reproduced by the SL ansatz than the UCC ansatz, in particular, for the strong interactions. This also indicates a problem of the parameter optimization of the UCC ansatz.

    V.   CONCLUSION
    • In this study, we applied two types of ansatz, the UCC and SL ansatz, to the Lipkin model and succeeded in obtaining the ground-state energy for all model interaction strengths. It is found that the errors between the results of the SL ansatz and the exact values are in general less than those by the UCC ansatz. For example, for the case of $ N = 4 $ with the interaction strength $ v = 4 $, the mean relative errors $ (\bar E_{\rm{cal}} - E_{\rm{exact}})/E_{\rm{exact}} $ by the SL and UCC ansatz are 1.6% and 3.8%, respectively. In addition, the quantum circuit of the SL ansatz requires fewer quantum gates, such as the CNOT gates and the rotation gates. As a future work, we aim at applying the SL ansatz to nuclear shell model, which is more realistic and a natural extension of the Lipkin model.

    ACKNOWLEDGMENTS
    • We would like to thank the RIKEN iTHEMS program and the RIKEN Pioneering Project: Evolution of Matter in the Universe.

Reference (33)

目录

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return