-
In four dimensional spacetime, tree-level single-trace maximally-helicity-violating (MHV) amplitudes of Einstein-Yang-Mills (EYM) theory have been shown to satisfy the Selivanov-Bern-De Freitas-Wong [1−3] (SBDW) formula, which expresses the amplitude via a generating function. On another hand, Cachazo-He-Yuan (CHY) [4−6] formula gives a general approach to EYM amplitudes, which is independent of the dimension of spacetime and the helicity configuration. In four dimensions, the CHY formula has been shown to provide a spanning forest formula (first proposed in gravity, along the line of [7], [8] and [9]) for the single-trace MHV amplitude [10], which was further proven to be equivalent with the SBDW formula [10] and was generalized to double-trace MHV amplitudes [11] via the recursion expansion formula [12−16].
From another perspective, as pointed out in earlier literatures [17−21], each graviton in an EYM amplitude could be considered as a pair of collinear gluons which carry the same momentum and the same helicity. Particularly, inspired by the SBDW formula, [18] pointed out that the single-trace MHV amplitude with one and two gravitons can be explicitly expressed in terms of the MHV amplitudes where each graviton splits into a pair of collinear gluons [18]. This explicit formula of the single-trace MHV amplitudes was not extended into cases with an arbitrary number of gravitons yet. In this note, we take a small step forward in this direction: we provide a general formula for single-trace MHV amplitudes where each graviton splits into a pair of collinear gluons. When the number of gravitons is one or two, this formula turns back into the known results [18]. We hope this approach may provide a new insight for the study of helicity amplitudes in EYM.
The structure of this note is arranged as follows. In section 2, a helpful review of spinor-helicity formalism and the SBDW formula is presented. We study the amplitude with three gravitons in section 3 and sketch the general proof in section 4. Further discussions and conclusions are presented in section 5.
-
In this section, we provide a brief review of the spinor-helicity formalism in four dimensions [22], as well as the SBDW [1−3] formula and the spanning forest formula [10] for single-trace EYM amplitudes.
-
The momentum
$ k^{\mu}_i $ of each on-shell massless particle i is expressed by two copies of Weyl spinors$ \lambda_i^{a}\widetilde{\lambda}_i^{\dot{a}} $ . We define the spinor products as$ \left\langle {{i,j}} \right\rangle\equiv \epsilon_{a{b}}\lambda_i^{a}{\lambda}_{j}^{{b}},\; \; \; \; \; \; \; \; \; \; \left[ {{i,j}} \right]\equiv \epsilon_{\dot{a}\dot{b}}\widetilde{\lambda}_i^{\dot{a}}\widetilde{\lambda}_{j}^{\dot{b}}, $
where
$ \epsilon_{{a}{b}} $ and$ \epsilon_{\dot{a}\dot{b}} $ are totally antisymmetric tensors. Apparently, the spinor products are antisymmetric objects under the exchanging of the two spinors. With this expression, the Lorentz contraction of two momenta$ k^{\mu}_a $ and$ k^{\mu}_b $ reads:$ k_a\cdot k_b = \frac{1}{2}\left\langle {{a,b}} \right\rangle\left[ {{b,a}} \right]. $
More helpful properties in spinor-helicity formalsim are displayed as follows.
● Momentum conservation for an n-point amplitude:
$ \sum\limits_{\substack{i\neq \,j,k\\i = 1}}^n\left[ {{j,i}} \right]\left\langle {{i,k}} \right\rangle = 0. $
● Schouten identity:
$\begin{aligned}[b]& \left\langle {{a,b}} \right\rangle\left\langle {{c,d}} \right\rangle = \left\langle {{a,c}} \right\rangle\left\langle {{b,d}} \right\rangle+\left\langle {{b,c}} \right\rangle\left\langle {{d,a}} \right\rangle,\\ & \left[ {{a,b}} \right]\left[ {{c,d}} \right] = \left[ {{a,c}} \right]\left[ {{b,d}} \right]+\left[ {{b,c}} \right]\left[ {{d,a}} \right].\end{aligned} $
● The eikonal identity resulted by Schouten identity
$ \sum\limits_{i = j}^{k-1}\frac{\left\langle {{i,i+1}} \right\rangle}{\left\langle {{i,q}} \right\rangle\left\langle {{q,i+1}} \right\rangle} = \frac{\left\langle {{j,k}} \right\rangle}{\left\langle {{j,q}} \right\rangle\left\langle {{q,k}} \right\rangle}.\; $
(1) Finally, the n-gluon MHV amplitude
$ A(1,...,n) $ at tree level satisfies the famous Parke-Taylor formula [23]1 :$ A(1,...,n)\sim \frac{\langle ij\rangle^{4}}{\langle12\rangle\langle23\rangle\cdots\langle n1\rangle}, $
where i, j denote the two negative-helicity gluons and other gluons are supposed to be positive-helicity ones.
-
In EYM, there are two possible situations of the tree-level single-trace MHV amplitudes: the (
$ g^-,g^- $ ) and ($ h^-,g^- $ ) configurations, which correspond to amplitudes with two negative-helicity gluons, and one negative-helicity gluon plus one negative-helicity graviton. In the following, we focus on the ($ g^-,g^- $ ) configuration. The ($ h^-,g^- $ ) can be studied similarly.The SBDW [1−3] formula expresses the single trace (
$ g^-g^- $ )-MHV amplitude$ A(1,...,i,...,j,...,N|\mathrm{H}) $ in EYM as:$ A(1,...,i,...,j,...,N|\mathrm{H})\sim\frac{\langle ij\rangle^{4}}{\langle12\rangle\langle23\rangle\cdots\langle N1\rangle}S(i,j,\mathrm{H},\{1,...,N\}) $
(2) where 1,..., N are gluons arranged in a fixed ordering,
$ \mathrm{H} = \{n_1,...,n_M\} $ are gravitons which are independent of color orderings. The negative-helicity gluons are supposed to be i and j. The$ S(i,j,\mathrm{H},\{1,...,N\}) $ factor is generated by an exponential generating function, particularly$ \begin{aligned}[b] S(\mathrm{H};\{1,...,N\}) =\;& \left(\prod\limits_{m\in\mathrm{H}}\frac{d}{da_{m}}\right)\exp\Bigg[\sum\limits_{n_{1}\in\mathrm{H}}a_{n_1}\sum\limits_{l\in \mathrm{G}}\psi_{ln_1} \\&\times\exp\Bigg[\sum\limits_{n_{2}\in\mathrm{H},n_{2}\neq n_{1}}a_{n_2}\psi_{n_1n_2}\exp(...)\Bigg]\Bigg]\Bigg|_{a_m = 0},\end{aligned} $
(3) in which
$ \psi_{ab}\equiv\frac{[ab]\langle a\xi \rangle\langle a\eta \rangle}{\langle ab\rangle\langle b\xi \rangle\langle b\eta \rangle} $
(4) where
$ \xi $ ,$ \eta $ are arbitrarily chosen reference spinors and G is the gluon set. In this note, we set$ \xi = 1 $ and$ \eta = N $ when studying the ($ g^-,g^- $ ) configuration.It was shown in [10] that
$ S(\mathrm{H};\mathrm{G}) $ could be expanded by spanning forest form. Particularly:$ S(\mathrm{H};\mathrm{G}) = \sum\limits_{F\in {\cal{F}}_{\mathrm{G}}(\mathrm{G}\cup\mathrm{H})}(\prod\limits_{ab\in E(F)}\psi_{ab}), $
(5) where we have summed over all possible forests F, where gluons and gravitons are considered as vertices, and the gluons are considered as the root set. Each edge
$ ab $ is dressed by$ \psi_{ab} $ , and multiply all such edges in a given forest F together.In the case of (
$ h^-,g^- $ ), the formulas (2) (3) and (5) are slightly changed [3, 10, 11] via (i). replacing$ i,j $ in (2) by the negative helicity graviton and the negative-helicity gluon, (ii). replacing the gravitons set H in (3) and (5) by the positive-helicity graviton set$ \mathrm{H}^+ $ , while the root set is still the gluon set. (ii). introducing an extra minus$ (-1) $ . -
In this section, we extend the study of one and two graviton single-trace MHV amplitudes [18], where each gravition is presented as a pair of collinear gluons, to the cases with an arbitrary number of gravitons. We demonstrate this by the example with three gravitons in the current section, and then provide a general formula in the next section.
According to (2) and (5), the MHV amplitude with gluons 1,..., N and three gravitons
$ n_1 $ ,$ n_2 $ ,$ n_3 $ is presented by$ A(1,...,N|n_1,n_2,n_3) \sim\frac{\langle ij\rangle^{4}}{\langle12\rangle\langle23\rangle\cdots\langle N1\rangle}\,S_3, $
where
$ S_3 $ is the abbreviation of the factor (5) with three gravitons. Specifically,$ S_3 $ is expressed as$ \begin{aligned}[b] S_3 =\;& \psi_1\psi_2\psi_3 + \psi_1\psi_2(\psi_{13}+\psi_{23}) + \psi_1\psi_3(\psi_{12}+\psi_{32}) \\&+ \psi_2\psi_3(\psi_{21}+\psi_{31}) + \psi_1(\psi_{12}\psi_{23}+\psi_{13}\psi_{32}+\psi_{12}\psi_{13})\\& + \psi_2(\psi_{21}\psi_{13}+\psi_{23}\psi_{31}+\psi_{21}\psi_{23})\\ & + \psi_3(\psi_{31}\psi_{12}+\psi_{32}\psi_{21}+\psi_{31}\psi_{32}), \end{aligned} $
(6) which are characterized by all possible spanning forests with structures Fig. 1. Each
$ \psi_{ab} $ ($ a\neq b, a,b = 1,2,3 $ ) in the above expression is defined by (4) and is associating to an edge in the graphs Fig. 1, while the$ \psi_i $ ($ i = 1,2,3 $ ), associating to the graviton$ n_i $ , is defined byFigure 1. All possible topologies of spanning forests for the three-graviton example. The a, b and c refer to different gravitons.
$ \psi_i\equiv\sum\limits_{l\in\mathrm{G}}\psi_{ln_i}.\nonumber $
In the following, we analyze the contribution of each term in eq. (6).
First, let us deal with the term
$ \psi_1\psi_{12}\psi_{23} $ , which is characterized by Fig. 1 (a) (with$ a = 1 $ ,$ b = 2 $ ,$ c = 3 $ ), on the right hand side of eq. (6). Noting that$ \begin{aligned}[b] \psi_1 =\;& \sum\limits_{l\in \mathrm{G}} \frac{[ln_1]\langle l1\rangle\langle lN \rangle}{\langle ln_1 \rangle \langle n_11 \rangle \langle n_1N \rangle}\\ =\;& \sum\limits_{l\in \mathrm{G}} [ln_1]\langle ln_1 \rangle \frac{-\langle 1l\rangle}{\langle 1n_1 \rangle \langle n_1l \rangle}\frac{\langle lN \rangle}{\langle ln_1 \rangle\langle n_1N \rangle}\\ =\;& \sum\limits_{l\in \mathrm{G}} s_{ln_1}\times \sum\limits_{r_1 = 1}^{l-1}\frac{\langle r_1,r_1+1\rangle}{\langle r_1,n_1\rangle\langle n_1,r_1+1 \rangle}\sum\limits_{t_1 = l}^{N-1}\frac{\langle t_1,t_1+1\rangle}{\langle t_1,n_1\rangle\langle n_1,t_1+1 \rangle}, \end{aligned} $
(7) where the eikonal identity (1) and the fact that
$ s_{ln_1} = [ln_1]\langle n_1l \rangle $ are applied, we write the Parke-Taylor factor accompanied by$ \psi_1\psi_{12}\psi_{23} $ as$ \begin{aligned}[b]& \frac{\langle ij\rangle^{4}}{\langle12\rangle\langle23\rangle\cdots\langle N1\rangle}\psi_1\psi_{12}\psi_{23} = \psi_{12}\psi_{23}\\&\biggl[\,\sum\limits_{l\in \mathrm{G}}s_{ln_1}\sum\limits_{r_1 = 1}^{l-1}\sum\limits_{t_1 = l}^{N-1}\langle ij\rangle^{4}\frac{1}{\langle12\rangle\cdots \langle r_1,n_1\rangle\langle n_1,r_1+1\rangle\cdots\langle l-1,l\rangle} \\ & \times \frac{1}{\langle l,l+1\rangle \cdots \langle t_1,\widetilde n_1\rangle\langle \widetilde n_1,t_1+1 \rangle \cdots \langle N1\rangle}\,], \end{aligned}$
(8) where the factors
$ \langle r_1,r_1+1\rangle $ and$ \langle t_1,t_1+1\rangle $ in the denominator of the Parke-Taylor factor have been replaced by$ \langle r_1,n_1\rangle\langle n_1,r_1+1 \rangle $ and$ \langle t_1,n_1\rangle\langle n_1,t_1+1 \rangle $ , respectively. The$ n_1 $ in the second Parke-Taylor factor is further denoted by$ \widetilde n_1 $ . Hence, the graviton$ n_1 $ splits into two gluons$ n_1 $ and$ \widetilde n_1 $ with the same momentum and helicity, which are respectively inserted between 1, l and l, N. Now we further express$ \psi_{12} $ and$ \psi_{23} $ by$ \psi_{12} = s_{n_1n_2}\sum\limits_{r_2 = 1}^{n_1-1}\frac{\langle r_2,r_2+1\rangle}{\langle r_2,n_2\rangle\langle n_2,r_2+1 \rangle}\sum\limits_{t_2 = \widetilde n_1}^{N-1}\frac{\langle t_2,t_2+1\rangle}{\langle t_2,n_2\rangle\langle n_2,t_2+1 \rangle}, $
(9) $ \psi_{23} = s_{n_2n_3}\sum\limits_{r_3 = 1}^{n_2-1}\frac{\langle r_3,r_3+1\rangle}{\langle r_3,n_3\rangle\langle n_3,r_3+1 \rangle}\sum\limits_{t_3 = \widetilde n_2}^{N-1}\frac{\langle t_3,t_3+1\rangle}{\langle t_3,n_3\rangle\langle n_3,t_3+1 \rangle}, $
(10) respectively. When (9) is substituted into (8), we find that the graviton
$ n_2 $ splits into two gluons$ n_2 $ and$ \widetilde n_2 $ , which are respectively inserted to the left side of$ n_1 $ and to the right side of$ \widetilde n_1 $ . Similarly, (10) finally inserts two gluons$ n_3 $ and$ \widetilde n_3 $ corresponding to the graviton$ n_3 $ to the left side of$ n_2 $ and the right side of$ \widetilde n_2 $ . The term$ \dfrac{\langle ij\rangle^{4}}{\langle12\rangle\langle23\rangle\cdots\langle N1\rangle}\psi_1\psi_{12}\psi_{23} $ is then written as$ \sum\limits_{l\in \mathrm{G}}s_{n_1l}s_{n_2n_1}s_{n_3n_2}\sum\limits_{{\boldsymbol{\rho}}^{(l)}}\text{PT}\left(1,{\boldsymbol{\rho}}^{(l)},N\right), $
in which, we introduced
$ \text{PT}\left(a_1,...,a_m\right) $ to denote the PT factor$ \dfrac{\langle ij\rangle^{4}}{\langle a_1a_2\rangle\langle a_2a_3\rangle\cdots\langle a_ma_1\rangle} $ for short. Permutations$ {\boldsymbol{\rho}}^{(l)} $ for a given$ l\in\mathrm{G} $ are given by$ {\boldsymbol{\rho}}^{(l)}\in\Big\{\{2,...,l-1\}\shuffle\{n_3,n_2,n_1\}, l, \{l+1,...,N - 1\}\shuffle\{\widetilde n_1,\widetilde n_2,\widetilde n_3\}\Big\}, $
where the
$ A\shuffle B $ for two ordered sets A, B denotes all possible permutations by merging A and B together so that the relative ordering of elements in each of A and B is preserved. The above permutations can be characterized by the graph Fig. 2 (a).Figure 2. (a). Permutations with the relative orderings
$1,...,n_3,...,n_2,...,n_1,...,l,...,\widetilde n_1,...,\widetilde n_2,...,\widetilde n_3,...,N$ . (b). Permutations with the relative orderings$1,...,n_2,...,n_3,...,n_1,...,l,...,\widetilde n_1,...,\widetilde n_3,...,\widetilde n_2,...,N$ .Second, we investigate the term with
$ \psi_1\psi_{12}\psi_{13} $ , which is associated to the graph Fig. 1 (b) (with$ a = 1 $ ,$ b = 2 $ ,$ c = 3 $ ). When the factor$ \psi_1 $ and$ \psi_{12} $ are expressed by (7) and (9), and$ \psi_{13} $ is expressed as follows$ \psi_{13} = s_{n_1n_3}\sum\limits_{r_3 = 1}^{n_1-1}\frac{\langle r_3,r_3+1\rangle}{\langle r_3,n_3\rangle\langle n_3,r_3+1 \rangle}\sum\limits_{t_3 = \widetilde n_1}^{N-1}\frac{\langle t_3,t_3+1\rangle}{\langle t_3,n_3\rangle\langle n_3,t_3+1 \rangle},\nonumber $
we just split the gravitons
$ n_1 $ ,$ n_2 $ and$ n_3 $ into three pairs of gluons$ \{n_1,\widetilde n_1\} $ ,$ \{n_2,\widetilde n_2\} $ and$ \{n_3,\widetilde n_3\} $ , respectively. The two gluons$ n_1 $ ,$ \widetilde n_1 $ coming from the graviton$ n_1 $ are inserted to the left and the right sides of l, while the$ n_2 $ and$ \widetilde n_2 $ (and also$ n_3 $ and$ \widetilde n_3 $ ) are further inserted to the left of$ n_1 $ and the right of$ \widetilde n_1 $ . Thus this term turns into$\begin{aligned}[b]& \frac{\langle ij\rangle^{4}}{\langle12\rangle\langle23\rangle\cdots\langle N1\rangle}\psi_1\psi_{12}\psi_{13} \\=\;& \sum\limits_{l\in \mathrm{G}}s_{n_1l}s_{n_2n_1}s_{n_3n_1}\sum\limits_{{\boldsymbol{\rho}}^{(l)}}\text{PT}\left(1,{\boldsymbol{\rho}}^{(l)},N\right), \end{aligned}$
where
$ {\boldsymbol{\rho}}^{(l)} $ for a given l is now given by$\begin{aligned}[b]& {\boldsymbol{\rho}}^{(l)}\in \Big\{\{2,...,l-1\}\shuffle\{\{n_3\}\shuffle\{n_2\},n_1\}, l,\\& \{l+1,...,N-1\}\shuffle\{\widetilde n_1,\{\widetilde n_2\}\shuffle\{\widetilde n_3\}\}\Big\},\; \;\end{aligned} $
(11) which are characterized by Fig. 2 (a) and (b).
Third, we calculate the term with
$ \psi_1\psi_{3}\psi_{12} $ (see Fig. 1 (c) with$ a = 1 $ ,$ b = 2 $ ,$ c = 3 $ ). When the same trick with the previous examples is applied,$ \psi_1 $ and$ \psi_{12} $ are expressed by (7) and (9), while$ \psi_3 $ is obtained via replacing$ n_1 $ in (7) by$ n_3 $ . Again, these factors are used to insert gluon pairs into the Parke-Taylor factor. The result is$\begin{aligned}[b]& \frac{\langle ij\rangle^{4}}{\langle12\rangle\langle23\rangle\cdots\langle N1\rangle}\psi_1\psi_{3}\psi_{12} \\=\;& \sum\limits_{l_1,l_2\in \mathrm{G}}s_{n_1l_1}s_{n_2n_1}s_{n_3l_2}\sum\limits_{{\boldsymbol{\rho}}^{(l_1,l_2)}}\text{PT}\left(1,{\boldsymbol{\rho}}^{(l_1,l_2)},N\right), \end{aligned}$
in which,
$ {\boldsymbol{\rho}}^{(l_1,l_2)} $ for given$ (l_1,l_2) $ satisfies$ \begin{array}{l}\;\;\;\;\;\; {\boldsymbol{\rho}}^{(l_1,l_2)} \in \Big\{{\boldsymbol{\rho}}^{(l_1)}_{L}\shuffle\{n_3\},l_2,{\boldsymbol{\rho}}^{(l_1)}_R\shuffle\{\widetilde n_3\}\Big\},\; \\ \text{where}\;\quad {\boldsymbol{\rho}}^{(l_1)} \in \Big\{\{2,...,l_1-1\}\shuffle\{n_2,n_1\}, l_1,\\ \{l_1+1,...,N-1\}\shuffle\{\widetilde n_1,\widetilde n_2\}\Big\}. \end{array}$
(12) On the second line, the
$ {\boldsymbol{\rho}}^{(l_1)} $ denotes the permutations established by inserting the collinear gluons corresponding to$ n_1 $ and$ n_2 $ into the original gluon set, while$ {\boldsymbol{\rho}}^{(l_1)}_{L} $ and$ {\boldsymbol{\rho}}^{(l_1)}_{R} $ are the sectors separated by the gluon$ l_2 $ in the permutation$ {\boldsymbol{\rho}}^{(l_1)} $ . Possible relative positions of$ l_2 $ in$ {\boldsymbol{\rho}}^{(l_1)} $ are displayed by Fig. 3 (a)-(g). Since the choices of$ l_1 $ and$ l_2 $ are independent of each other and we finally summed over all possible choices of$ l_1 $ and$ l_2 $ , one can exchange the roles of$ l_1 $ ,$ l_2 $ in (12) as followsFigure 3. Possible relative positions of
$l_2$ in the permutations${\boldsymbol{\rho}}^{(l_1)}$ in (12)$\begin{array}{l} \;\; \;\; {\boldsymbol{\rho}}^{(l_1,l_2)} \in \Big\{{\boldsymbol{\rho}}^{(l_2)}_{L}\shuffle\{n_2,n_1\},l_1,{\boldsymbol{\rho}}^{(l_2)}_R\shuffle\{\widetilde n_1,\widetilde n_2\}\Big\},\; \\ \text{where}\;\quad {\boldsymbol{\rho}}^{(l_2)} \in \Big\{\{2,...,l_2-1\}\shuffle\{n_3\}, l_2, \\\{l_2+1,...,N-1\}\shuffle\{\widetilde n_3\}\Big\}. \end{array} $
(13) When all possible spanning forests for amplitude with three gravitons are considered, the full MHV amplitude with three gravitons is finally expressed by the following formula:
$\begin{aligned}[b]& A(1,...,N|n_1,n_2,n_3)\sim \sum\limits_{\substack{\text{Spanning Forests}\\ \{{\cal{T}}_1,...,{\cal{T}}_i\}}}\,\sum\limits_{l_1,...,l_i\in\mathrm{G}}K({\cal{T}}_1)\,...\,\\&K({\cal{T}}_i)\,\text{PT}\left(1,{\boldsymbol{\rho}}^{(l_1,...,l_i)},N\right).\; \; \; \; (i\leq 3)\end{aligned} $
(14) In the above expression, we have summed over all possible spanning forests where the original gluon set G plays as the root set. For a given spanning forest with i (
$ i\leq 3 $ ) trees$ {\cal{T}}_1,...,{\cal{T}}_i $ planted at gluons$ l_1,...,l_i\in \mathrm{G} $ ($ l_j $ and$ l_k $ with distinct labels may be identical), each$ K({\cal{T}}_j) $ ($ j = 1,...,i $ ) is given by$ K({\cal{T}}_j) = \prod\limits_{ab\in E({\cal{T}}_j)}s_{ab}, $
where
$ ab\in E({\cal{T}}_j) $ is an edge of the tree$ {\cal{T}}_j $ with vertices a and b. More explicity, there are four possible topologies for the three-graviton amplitude, as shown by Fig. 1 (a), (b), (c) and (d), which respectively provide factors$ s_{cb}s_{ba}s_{al},\; \; \; \; s_{ba}s_{ca}s_{al},\; \; \; \; s_{ba}s_{al_1}s_{cl_2},\; \; \; \; s_{al_1}s_{bl_2}s_{cl_3}, $
while a, b, c represent distinct gravitons. Two graphs with exchanging the branches attached to a same vertex are considered as the same graph, e.g. Fig. 1 (b). The permutations associated to Fig. 1 (a) and (b) can be recursively defined by (11) and (12), via replacing the subscripts 1, 2 and 3 of gravitons in (12) by a, b and c, respectively. The permutations for Fig. 1 (c) satisfy
$ \begin{array}{l} \;\;\;\; {\boldsymbol{\rho}}^{(l_1,l_2)}\in\Big\{{\boldsymbol{\rho}}^{(l_1)}\shuffle\{n_c\},l_2,{\boldsymbol{\rho}}^{(l_1)}\cup\{\widetilde n_c\}\Big\}, \\ \text{where} \;\quad {\boldsymbol{\rho}}^{(l_1)}\in \Big\{\{2,...,l_1-1\}\cup\{n_b,n_a\},l_1,\\\{l_1+1,...,N-1\}\shuffle\{\widetilde n_a,\widetilde n_b\}\Big\}. \end{array} $
Permutations accompanying to Fig. 1 (d) are presented by
$\begin{array}{l} \;\;\;\;\;\;\;\; {\boldsymbol{\rho}}^{(l_1,l_2,l_3)}\in\Big\{{\boldsymbol{\rho}}^{(l_1,l_2)}\shuffle\{n_c\},l_3,{\boldsymbol{\rho}}^{(l_1,l_2)}\shuffle\{\widetilde n_c\}\Big\}, \\ \text{where} \; {\boldsymbol{\rho}}^{(l_1,l_2)}\in\Big\{{\boldsymbol{\rho}}_L^{(l_1)}\shuffle\{n_b\},l_2,{\boldsymbol{\rho}}_R^{(l_1)}\shuffle\{\widetilde n_b\}\Big\} \\ \;\; \text{and} \; {\boldsymbol{\rho}}^{(l_1)}\in\Big\{\{2,...,l_1-1\}\shuffle\{n_a\},l_1,\{l_1+1,...,N-1\}\shuffle\{\widetilde n_a\}\Big\}. \end{array} $
Having displayed the example with three gravitons, we turn to the general formula in the next section.
-
Inspired by the example in the previous section, we propose the following general formula where gravitions split into pairs of collinear gluons
$ \begin{aligned}[b]&A(1,...,N| \mathrm{H})\sim \sum\limits_{l_1,...,l_i\in\mathrm{G}}\,\sum\limits_{\substack{\text{Spanning Forests}\\ \{{\cal{T}}_1,...,{\cal{T}}_i\}}}\,K({\cal{T}}_1)\,...\,\\&K({\cal{T}}_i)\,\text{PT}\left(1,{\boldsymbol{\rho}}^{(l_1,...,l_i)},N\right). \end{aligned}$
(15) Here we sum over all possible spanning forests in which trees are planted at gluons
$ l_1,...,l_i\in\mathrm{G} $ . This summation is expressed by two summations:● (i). summing over all possible choices of the roots
$ l_1,...,l_i $ ($ i = 1,...,M $ ),● (ii). for a given choice of roots
$ l_1 $ ,...,$ l_i $ , summing over all possible configurations of forests, which consist of nontrivial trees$ {\cal{T}}_1 $ ,...,$ {\cal{T}}_i $ planted at the gluons$ l_1 $ ,...,$ l_i $ .For a fixed forest, each tree
$ {\cal{T}}_k $ is associated with a factor$ K({\cal{T}}_k) $ where each edge between two vertices a, b is assigned by a factor$ s_{ab} $ . The permutations$ {\boldsymbol{\rho}}^{(l_1,...,l_k)} $ in the PT factors can be defined recursively:$ {\boldsymbol{\rho}}^{(l_1,...,l_{k})} = \left\{\,{\boldsymbol{\rho}}_L^{(l_1,...,l_{k-1})}\shuffle{\boldsymbol{\sigma}}^{{\cal{T}}_k},\,l_k,\,{\boldsymbol{\rho}}_R^{(l_1,...,l_{k-1})}\shuffle \big(\widetilde{{\boldsymbol{\sigma}}}^{{\cal{T}}_k}\big)^T \right\}.\; \; (k\leq i) $
(16) where
$ {\boldsymbol{\rho}}_L^{(l_1,...,l_{k-1})} $ and$ {\boldsymbol{\rho}}_R^{(l_1,...,l_{k-1})} $ denote the two ordered sets which are separated by the gluon$ l_k $ in the permutation$ {\boldsymbol{\rho}}^{(l_1,...,l_{k-1})} $ . The$ {\boldsymbol{\sigma}}^{{\cal{T}}_k} $ ($ \widetilde{{\boldsymbol{\sigma}}}^{{\cal{T}}_k} $ ) stands for the permutations established by the tree graph$ {\cal{T}}_k $ whose nodes are$ \{n_i\} $ ($ \{\widetilde n_i\} $ ), while$ (\widetilde{{\boldsymbol{\sigma}}}^{{\cal{T}}_k})^T $ denotes the reverse of$ \widetilde{{\boldsymbol{\sigma}}}^{{\cal{T}}_k} $ .Now we sketch the proof of the general formula (15):
● (i). Step-1 Expand the MHV amplitude according to (2) and (5) in terms of spanning forests. Each forest F in general consists of i tree structures
$ {\cal{T}}_1 $ ,...,$ {\cal{T}}_i $ planted to gluons$ l_1,...,l_i\in \mathrm{G} $ .● (ii). Step-2 For a given forest
$ F = \{{\cal{T}}_1 $ ,...,$ {\cal{T}}_i\} $ and the tree$ {\cal{T}}_1 $ , there are two types of edges (a). the edge between a graviton a and the root (a gluon$ l_1\in \mathrm{G} $ ), (b). The edge between two gravitons b and c. In the former case, the edge is associated with a factor$ \psi_{a} $ which is expressed according to (7), while an edge of the latter form is accompanied by a factor$ \psi_{bc} $ , which is further rewritten as (9). After this manipulation, the factor$ \psi_{a} $ splits the graviton$ n_a $ into collinear gluons$ n_a $ and$ \widetilde n_a $ and then inserts them to the left and right of$ l_1 $ , respectively. A factor$ \psi_{bc} $ splits the graviton$ n_c $ into collinear gluons$ n_c $ and$ \widetilde n_c $ which are further inserted to the left of$ n_b $ and the right of$ \widetilde n_b $ ($ n_b $ which is nearer to root than$ n_c $ has already been treated before). The factor assigned to each edge$ bc $ is$ s_{bc} $ , and the product of all these factors gives$ K({\cal{T}}_1) $ . The permutations established by this step are given by$ {\boldsymbol{\rho}}^{(l_1)} = \left\{\{2,...,l_{1}-1\}\shuffle {\boldsymbol{\sigma}}^{{\cal{T}}_1},l_1,\{l_1+1,...,N-1\}\shuffle \big(\widetilde{{\boldsymbol{\sigma}}}^{{\cal{T}}_1}\big)^T\right\}. $
● (iii). Step-3 Insert the collinear gluons corresponding to the gravitons on trees
$ {\cal{T}}_2 $ ,...,$ {\cal{T}}_i $ in turn, by repeating step-2. We finally get the general formula (15) with permutations defined in (16). -
In this note, we presented a formula (15) for single-trace EYM amplitudes in the MHV configuration (with two negative-helicity gluons). Each graviton in this formula splits into a pair of collinear gluons. Thus an N-gluon, M-graviton amplitude is finally expressed as a combination of
$ N+2M $ gluon amplitudes with M pairs of collinear gluons. When the adjustment pointed in section 2 is considered, the formula (15) is straightforwardly extended to the MHV amplitude with one negative-helicity gluon and one negative-helicity graviton via (i). replacing i, j in the numerator of the PT factor by the negative-helicity graviton and the negative-helicity gluon, (ii). using the positive-helicity graviton set instead of the full graviton set on the RHS of (15). (iii). dressing the expression by an extra sign$ (-1) $ . It is worth extending the collinear expression in the current paper to the double-trace amplitudes and amplitudes with other helicity configurations in a future work.
Note on single-trace EYM amplitudes with MHV configuration
- Received Date: 2025-02-12
- Available Online: 2025-07-01
Abstract: In the maximally-helicity-violating (MHV) configuration, tree-level single-trace Einstein-Yang-Mills (EYM) amplitude with one and two gravitons have been shown to satisfy a formula where each graviton splits into a pair of collinear gluons. In this paper, we extend this formula to more general cases. We provide a general formula which expresses tree-level single-trace MHV amplitudes in terms of pure gluon amplitudes, where each graviton turns into a pair of collinear gluons.