## 2019 Vol. 43, No. 12

Display Method: |

2019, 43(12): 123101. doi: 10.1088/1674-1137/43/12/123101

**Abstract:**

We calculate cross-sections and cross-section ratios of a charm quark production in association with a

*W*gauge boson at next-to-leading order QCD using MadGraph and CT10NNLO, CT14NNLO, and MSTW2008NNLO PDFs. We compare the results with measurements from the CMS detector at the LHC at a center-of-mass energy of 7 TeV. Moreover, we calculate absolute and normalized differential cross-sections as well as differential cross-section ratios as a function of the lepton pseudorapidity from the

*W*boson decay. The correlation between the CT14NNLO PDFs and predictions for

2019, 43(12): 123102. doi: 10.1088/1674-1137/43/12/123102

**Abstract:**

In this article, we take the scalar diquark and antidiquark operators as the basic constituents, and construct the

*Y*(10750) with the QCD sum rules. The predicted mass

*Y*(10750) as the diquark-antidiquark type vector hidden-bottom tetraquark state, with a relative

*P*-wave between the diquark and antidiquark constituents.

2019, 43(12): 123103. doi: 10.1088/1674-1137/43/12/123103

**Abstract:**

The precision study of

*H*, and their decay products are provided. We find that the QCD correction significantly enhances the leading-order differential cross section, while the EW correction from the

*H,*and their decay products. These photon-induced corrections compensate the negative

*b*-jet transverse momentum distribution can exceed 100% in the high

2019, 43(12): 124001. doi: 10.1088/1674-1137/43/12/124001

**Abstract:**

The

2019, 43(12): 124002. doi: 10.1088/1674-1137/43/12/124002

**Abstract:**

Differential and angle-integrated cross sections for the

^{10}B(

*n*,

*α*)

^{7}Li,

^{10}B(

*n*,

*α*

_{0})

^{7}Li and

^{10}B(

*n*,

*α*

_{1})

^{7}Li

^{*}reactions have been measured at CSNS Back-

*n*white neutron source. Two enriched (90%)

^{10}B samples 5.0 cm in diameter and ~85.0 μg/cm

^{2}in thickness each with an aluminum backing were prepared, and back-to-back mounted at the sample holder. The charged particles were detected using the silicon-detector array of the Light-charged Particle Detector Array (LPDA) system. The neutron energy

*E*was determined by TOF (time-of-flight) method, and the valid

_{n}*α*events were extracted from the

*E*-Amplitude two-dimensional spectrum. With 15 silicon detectors, the differential cross sections of

_{n}*α*-particles were measured from 19.2° to 160.8°. Fitted with the Legendre polynomial series, the (

*n*,

*α*) cross sections were obtained through integration. The absolute cross sections were normalized using the standard cross sections of the

^{10}B(

*n*,

*α*)

^{7}Li reaction in the 0.3 − 0.5 MeV neutron energy region. The measurement neutron energy range for the

^{10}B(

*n*,

*α*)

^{7}Li reaction is 1.0 eV≤

*E*< 2.5 MeV (67 energy points), and that for the

_{n}^{10}B(

*n*,

*α*

_{0})

^{7}Li and

^{10}B(

*n*,

*α*

_{1})

^{7}Li

^{*}reactions is 1.0 eV ≤

*E*< 1.0 MeV (59 energy points). The present results have been analyzed by the resonance reaction mechanism and the level structure of the

_{n}^{11}B compound system, and compared with existing measurements and evaluations.

2019, 43(12): 124101. doi: 10.1088/1674-1137/43/12/124101

**Abstract:**

This work uses the Boltzmann transport model to study the thermal production of

2019, 43(12): 124102. doi: 10.1088/1674-1137/43/12/124102

**Abstract:**

In order to describe charge exchange reactions at intermediate energies, we implemented as a first step the formulation of the normal eikonal approach. The calculated differential cross-sections based on this approach deviated significantly from the conventional DWBA calculations for CE reactions at 140 MeV/nucleon. Thereafter, improvements were made in the application of the eikonal approximation so as to keep a strict three-dimensional form factor. The results obtained with the improved eikonal approach are in good agreement with the DWBA calculations and with the experimental data. Since the improved eikonal approach can be formulated in a microscopic way, it is easy to apply to CE reactions at higher energies, where the phenomenological DWBA is a priori difficult to use due to the lack, in most cases, of the required phenomenological potentials.

2019, 43(12): 124103. doi: 10.1088/1674-1137/43/12/124103

**Abstract:**

The multinucleon transfer (MNT) process has been proposed as a promising approach to produce neutron-rich superheavy nuclei (SHN). MNT reactions based on the radioactive targets

^{249}Cf,

^{254}Es, and

^{257}Fm are investigated within the framework of the improved version of a dinuclear system (DNS-sysu) model. The MNT reaction

^{238}U +

^{238}U was studied extensively as a promising candidate for producing SHN. However, based on the calculated cross-sections, it was found that there is little possibility to produce SHN in the reaction

^{238}U +

^{238}U. In turn, the production of SHN in reactions with radioactive targets is likely.

2019, 43(12): 124104. doi: 10.1088/1674-1137/43/12/124104

**Abstract:**

We propose a method for extracting the properties of the isobaric mass parabola based on the total double

*A*values, based on the total double

*A*, which are employed in the mass parabolic fitting method. The Coulomb energy coefficient

2019, 43(12): 124105. doi: 10.1088/1674-1137/43/12/124105

**Abstract:**

In this study, we compared the effect of the isospin asymmetry of proton and neutron density distributions in the neutron skin-type (NST) case and in the Hartree-Fock formalism (HF) on the half-life of alpha emitters with the atomic number in the range of

*α*-decay widths of about 30% for the NST case in comparison with the equivalent values obtained by HF formalism. The standard deviations for calculated half-lives within the NST case and HF formalism are about 0.438 and 0.391, respectively.

2019, 43(12): 124106. doi: 10.1088/1674-1137/43/12/124106

**Abstract:**

We study the structure of neutron-rich calcium isotopes in the shell model with realistic interactions. The CD-Bonn and Kuo-Brown (KB) interactions are used. As these interactions do not include the three-body force, their direct use leads to poor results. We tested whether the adjustment of the single particle energies (SPEs) would be sufficient to include the three-body correlations empirically. It turns out that the CD-Bonn interaction, after the adjustment of SPEs, gives good agreement with the experimental data for the energies and spectroscopy. For the KB interaction, both the SPEs and monopole terms require adjustments. Thus, the monopole problem is less serious for modern realistic interactions which include perturbations up to the third order. We also tested the effect of the non-central force on the shell structure. It is found that the effect of the tensor force in the CD-Bonn interaction is weaker than in the KB interaction.

2019, 43(12): 124107. doi: 10.1088/1674-1137/43/12/124107

**Abstract:**

All existing experimental evidence for the bound state nature of

2019, 43(12): 124108. doi: 10.1088/1674-1137/43/12/124108

**Abstract:**

A microscopic high spin study of neutron deficient and normally deformed

^{133,135,137}Sm has been carried out in projected shell model framework. The theoretical results have been obtained for the spins, parities and energy values of yrast and excited bands. Besides this, the band spectra, band head energies, moment of inertia and electromagnetic transition strengths are also predicted in these isotopes. The calculations successfully give a deeper understanding of the mechanism of the formation of yrast and excited bands from the single and multi-quasi particle configurations. The results on moment of inertia predict an alignment of a pair of protons in the proton (1

*h*

_{11/2})

^{2}orbitals in the yrast ground state bands of

^{133-137}Sm due to the crossing of one quasiparticle bands by multi-quasiparticle bands at higher spins. The discussion in the present work is based on the deformed single particle scheme. Any future experimental confirmation or refutation of our predictions will be a valuable information which can help to understand the deformed single particle structure in these odd mass neutron deficient

^{133-137}Sm.

2019, 43(12): 124109. doi: 10.1088/1674-1137/43/12/124109

**Abstract:**

We investigate the mass-shift of

*P*-wave charmonium (

*S*and

*P*-wave bottomonium (

2019, 43(12): 124110. doi: 10.1088/1674-1137/43/12/124110

**Abstract:**

The electric quadrupole moment

^{72-80}Ge and odd-mass nuclei

^{75-79}Ge are studied in the framework of the nucleon pair approximation (NPA) of the shell model, assuming the monopole and quadrupole pairing plus quadrupole-quadrupole interaction. Our calculations reproduce well the experimental values of

^{72,74,76}Ge, as well as the yrast energy levels of these isotopes. The structure of the

^{72,74}Ge is suggested to be due to the enhanced quadrupole-quadrupole correlation and configuration mixing.

2019, 43(12): 125101. doi: 10.1088/1674-1137/43/12/125101

**Abstract:**

Considering the cosmological constant as the pressure, this study addresses the laws of thermodynamics and weak cosmic censorship conjecture in the Reissner-Nordström-AdS black hole surrounded by quintessence dark energy under charged particle absorption. The first law of thermodynamics is found to be valid as a particle is absorbed by the black hole. The second law, however, is violated for the extremal and near-extremal black holes, because the entropy of these black hole decrease. Moreover, we find that the extremal black hole does not change its configuration in the extended phase space, implying that the weak cosmic censorship conjecture is valid. Remarkably, the near-extremal black hole can be overcharged beyond the extremal condition under charged particle absorption. Hence, the cosmic censorship conjecture could be violated for the near-extremal black hole in the extended phase space. For comparison, we also discuss the first law, second law, and the weak cosmic censorship conjecture in normal phase space, and find that all of them are valid in this case.

2019, 43(12): 125102. doi: 10.1088/1674-1137/43/12/125102

**Abstract:**

We test the possible dipole anisotropy of the Finslerian cosmological model and the other three dipole-modulated cosmological models, i.e. the dipole-modulated ΛCDM,

*w*CDM and Chevallier–Polarski–Linder (CPL) models, by using the recently released Pantheon sample of SNe Ia. The Markov chain Monte Carlo (MCMC) method is used to explore the whole parameter space. We find that the dipole anisotropy is very weak in all cosmological models used. Although the dipole amplitudes of four cosmological models are consistent with zero within the

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- Notification to our authors â Delay in the production process
- The 2020 summer holiday-Office closure
- Impact factor of Chinese Physics C is 2.463 in 2019
- Chinese Physics C: 2019 Reviewer Awards
- FUTURE PHYSICS PROGRAMME OF BESIII

Meet Editor