## 2019 Vol. 43, No. 9

Display Method: |

2019, 43(9): 093101. doi: 10.1088/1674-1137/43/9/093101

**Abstract:**

We study the theoretical constraints on a model whose scalar sector contains one color octet and one or two color singlet

*SU*(2)

_{L}doublets. To ensure unitarity of the theory, we constrain the parameters of the scalar potential for the first time at the next-to-leading order in perturbation theory. Moreover, we derive new conditions guaranteeing the stability of the potential. We employ the HEPfit package to extract viable parameter regions at the electroweak scale and test the stability of the renormalization group evolution up to the multi-TeV region. Furthermore, we set upper limits on the scalar mass splittings. All results are given for both cases with and without a second scalar color singlet.

2019, 43(9): 093102. doi: 10.1088/1674-1137/43/9/093102

**Abstract:**

The decay channel

^{4}LO level can be achieved. Taking the Higgs mass,

2019, 43(9): 093103. doi: 10.1088/1674-1137/43/9/093103

**Abstract:**

Recently, the LHCb experiment announced the observation of hidden-charm pentaquark states

2019, 43(9): 093104. doi: 10.1088/1674-1137/43/9/093104

**Abstract:**

FCNC processes offer important tools to test the Standard Model (SM) and to search for possible new physics. In this work, we investigate the

2019, 43(9): 094001. doi: 10.1088/1674-1137/43/9/094001

**Abstract:**

The cross-sections for

^{46}Ti(n,2n)

^{45}Ti,

^{46}Ti(n,p)

^{46m+g}Sc+

^{47}Ti(n,d*)

^{46m+g}Sc,

^{46}Ti(n,p)

^{46m+g}Sc,

^{47}Ti(n,p)

^{47}Sc+

^{48}Ti(n,d*)

^{47}Sc,

^{47}Ti(n,p)

^{47}Sc,

^{48}Ti(n,p)

^{48}Sc+

^{49}Ti(n,d*)

^{48}Sc,

^{48}Ti(n,p)

^{48}Sc, and

^{50}Ti(n,α)

^{47}Ca reactions were investigated around neutron energies of 13.5–14.8 MeV by means of the activation technique. Fast neutrons were produced by the

^{3}H(d,n)

^{4}He reaction. Neutron energies from different directions in the measurements were obtained in advance using the method of cross-section ratios for

^{90}Zr(n,2n)

^{89m+g}Zr and

^{93}Nb(n,2n)

^{92m}Nb reactions. The results obtained are analyzed and compared with the experimental data provided by the literature and verified nuclear data in the JEFF-3.3, CENDL-3.1, ENDF/B-VIII.0 libraries, as well as results calculated by Talys-1.9 code.

2019, 43(9): 094101. doi: 10.1088/1674-1137/43/9/094101

**Abstract:**

True ternary fission and Tin-accompanied ternary fission of

^{242}Pu are studied by using the 'Three Cluster Model'. True ternary fission is considered as a formation of heavy fragments in the region

*Q*-values and relative yields for all possible fragmentations in equatorial and collinear configurations are calculated and compared. It is found that ternary fission with formation of a double magic nucleus like

2019, 43(9): 094102. doi: 10.1088/1674-1137/43/9/094102

**Abstract:**

Elastic scattering angular distributions and total reaction cross-sections of

^{7,10,11,12}Be projectiles are predicted by the systematic

^{9}Be global phenomenological optical model potential for target mass numbers ranging from 24 to 209. These predictions provide a detailed analysis by their comparison with the available experimental data. Furthermore, these elastic scattering observables are also predicted for some targets out of the mass number range. The results are in reasonable agreement with the existing experimental data, and they are presented in this study.

2019, 43(9): 094103. doi: 10.1088/1674-1137/43/9/094103

**Abstract:**

We investigate current-current correlation functions, or the so-called response functions of a two-flavor Nambu-Jona-Lasino model at finite temperature and density. The linear response is investigated introducing the conjugated gauge fields as external sources within the functional path integral approach. The response functions can be obtained by expanding the generational functional in powers of the external sources. We derive the response functions parallel to two well-established approximations for equilibrium thermodynamics, namely mean-field theory and a beyond-mean-field theory, taking into account mesonic contributions. Response functions based on the mean-field theory recover the so-called quasiparticle random phase approximation. We calculate the dynamical structure factors for the density responses in various channels within the random phase approximation, showing that the dynamical structure factors in the baryon axial vector and isospin axial vector channels can be used to reveal the quark mass gap and the Mott dissociation of mesons, respectively. Noting that the mesonic contributions are not taken into account in the random phase approximation, we also derive the response functions parallel to the beyond-mean-field theory. We show that the mesonic fluctuations naturally give rise to three kinds of famous diagrammatic contributions: the Aslamazov-Lakin contribution, the self-energy or density-of-state contribution, and the Maki-Thompson contribution. Unlike the equilibrium case, in evaluating the fluctuation contributions, we need to carefully treat the linear terms in external sources and the induced perturbations. In the chiral symmetry breaking phase, we find an additional chiral order parameter induced contribution, which ensures that the temporal component of the response functions in the static and long-wavelength limit recovers the correct charge susceptibility defined using the equilibrium thermodynamic quantities. These contributions from mesonic fluctuations are expected to have significant effects on the transport properties of hot and dense matter around the chiral phase transition or crossover, where the mesonic degrees of freedom are still important.

2019, 43(9): 094104. doi: 10.1088/1674-1137/43/9/094104

**Abstract:**

This study presents the systematics of energy staggering for magnetic rotational bands with

2019, 43(9): 094105. doi: 10.1088/1674-1137/43/9/094105

**Abstract:**

We consider a simple model for the diffusion of heavy quarks in a hot bath, modeling the latter by an ensemble of oscillators distributed according to either a thermal distribution or to an out-of-equilibrium distribution with a saturation scale. In this model it is easy to introduce memory effects by changing the distribution of oscillators: we model them by introducing a Gaussian distribution,

2019, 43(9): 095101. doi: 10.1088/1674-1137/43/9/095101

**Abstract:**

We investigate a 6D generalized Randall-Sundrum brane world scenario with a bulk cosmological constant. Each stress-energy tensor

2019, 43(9): 095102. doi: 10.1088/1674-1137/43/9/095102

**Abstract:**

In this paper, we investigate whether it is possible to determine the neutrino mass hierarchy via a high-statistics and real-time observation of supernova neutrinos with short-time characteristics. The essential idea is to utilize distinct times-of-flight for different neutrino mass eigenstates from a core-collapse supernova to the Earth, which may significantly change the time distribution of neutrino events in the future huge water-Cherenkov and liquid-scintillator detectors. For illustration, we consider two different scenarios. The first case is the neutronization burst of

2019, 43(9): 095103. doi: 10.1088/1674-1137/43/9/095103

**Abstract:**

*f*(Ricci) gravity is a special kind of higher curvature gravity whose bulk Lagrangian density is the trace of a matrix-valued function of the Ricci tensor. It is shown that under some mild constraints,

*f*(Ricci) gravity admits Einstein manifolds as exact vacuum solutions, and can be ghost-free and tachyon-free around maximally symmetric Einstein vacua. It is also shown that the entropy for spherically symmetric black holes in

*f*(Ricci) gravity calculated via the Wald method and the boundary Noether charge approach are in good agreement.

2019, 43(9): 095104. doi: 10.1088/1674-1137/43/9/095104

**Abstract:**

In a previous publication, we claimed that a black hole can be considered as a topological insulator. A direct consequence of this claim is that their symmetries should be related. In this paper, we give a representation of the near-horizon symmetry algebra of the BTZ black hole using the

*W*

_{1+∞}symmetry algebra of the topological insulator in three-dimensional spacetime. Based on the

*W*

_{1+∞}algebra, we count the number of the microstates of the BTZ black holes and obtain the Bekenstein-Hawking entropy.

**ISSN** 1674-1137 **CN** 11-5641/O4

Original research articles, Ietters and reviews Covering theory and experiments in the fieids of

- Particle physics
- Nuclear physics
- Particle and nuclear astrophysics
- Cosmology

Author benefits

- A SCOAP3 participating journal - free Open Access publication for qualifying articles
- Average 24 days to first decision
- Fast-track publication for selected articles
- Subscriptions at over 3000 institutions worldwide
- Free English editing on all accepted articles

News

- 2022 National holiday- office closure
- The 2022 summer holiday-Office closure
- Impact factor of Chinese Physics C is 2.944 in 2021
- The 2022 Labor Day Holiday-Office closure
- The 2022 Chinese New Year-Office closure

Meet Editor